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THE FOLLOWING THREE PATTERNS OCCUR FREQUENTLY.
BR=WR*AR-WI*AI
BI=AI*WR+ARX*WI

DATA(J)=DATA(I)~-TEMPR
DATA(J+1)=DATA(I+1)~-TEMPI
DATA(I)=DATA(I)+TEMPR
DATA(I+1)=DATA(I+1)+TEMPI

INDEX2MAX=INDEX1+N1~N2

P. 150 L. 7
ISTEP=2*MMAX

Po 21l Le 2 AND P, 17' Lo 2
NTOT=NTOT*NN(IDIM)

P. 22» L. 5=2 AND P« 17» L. 100=-2
NP2=NP1*N

P. 22¢ L. 12 AND L. 51
51 NTWO=NTWO+NTWO

Pe 220 L. 70+2
I1RNG=NP1
IF(IDIM=4)71,100,100

P. 23¢ Lo 72+1
I1RNG=NPO* (1+NPREV/2)

Pe 239 L. 120 AND P+ 17 L.110
110 OR 120 I1MAX=I2+NP1=2

Pe 230 Lo 12043 AND Ps 17 Lo 110+3
J3zJ+13-12

P. 23» L. 200
NWORK=2x*N

P 23» L.210-1
IF(ICASE-3)210,220,210

Pe 23» L. 240+1
J=J+IFP1
IF(J=-13-1IFP2)2600250¢250

P. 24¢ Lo 420+1 AND Ps 18¢ L. 420+1
KMIN=IPAR*M+I1

Pe 24r L. 440 AND P. 189 Lo 440
KDIF=IPAR*MMAX
KSTEP=4*KDIF

Pe 24» Lo 520+1 AND P. 18, L. 520+1
KMIN=4*x (KMIN=I1)+I1

KDIF=KSTEP

IF (KDIF=-NP2HF) 450,450,530

P. 25¢ L. 550+1 AND P. 19y L. 550+1
WR=(WR+WI)*RTHLF







Pe 25' Le S60+2 AND P. 19, Le 560+2
WIS (TEMPR+WI)*RTHLF

P. 25¢ L. 570+2 AND P. 199 L. 570+2
MMAX=MMAX+MMAX

Pe 267 L. 65042
J2RNG=IFP1*(1+IFACT(IF)/2)

P. 26r L. 655-2
I=1+(J3-13)/NP1HF

Po 26' Lo 665
665 ICONJ=1+(IFP2=2%J2+]13+J3) /NP1HF

Pe 270 L. 670+1
TEMPI=SUMI
SUMR=TWOWR*SUMR=OLDSR+DATA (J)
SUMI=TWOWR*SUMI=-OLDSI+DATA(J+1)
OLDSR=TEMPR
OLDSI=TEMPI
J=J=IFP1
IF(J=JMIN) 67516751670

675 TEMPR=WR*SUMR=OLDSR+DATA (J)
TEMPI=WI*SUMI
WORK (I)=TEMPR=TEMPI
WORK (ICONJ) =TEMPR+TEMPI
TEMPR=WR*SUMI-OLDSI+DATA(J+1)
TEMPI=WI*SUMR
WORK (I+1)=TEMPR+TEMPI
WORK (ICONJ+1)=TEMPR-TEMPI

Pe 275 Lo 690+2
I2MAX=13+NP2=NP1

P 27y Lo 710=2
JMIN=2%NHALF=1

P. 28+ L. 740
740 NP2=NP2+NP2

Pe 28¢ Lo 745-1
IMAX=NTOT/2+1
745 IMIN=IMAX=-2%NHALF

P. 28' Le 805+1
I2MAX=13+NP2=NP1

P. 28¢ L. 805+3
IMIN=IZ2+I1RNG
IMAX=I2+NP1=2
JMAX=2*I3+NP1-IMIN

Pe 28 L. 810
810 JMAX=JMAX+NP2
820 IF(IDIM=-2)850,8500830
830 J=JMAX+NPO

P. 28» L. 840
840 J=J=2

P. 28, L. 860
860 J=J=NPO
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ABSTRACT

This note describes and lists three programs, all written in USASI Basic
Fortran, which perform the discrete Fourier transform upon a multi-
dimensional array of floating point data. The data may be either real
or complex, with a savings in running time for real over complex. The
transform values are always complex and are returned in the array used
to carry the original data. The running time is much shorter than that
of any program performing a direct summation, even when sine and cosine
values are precalculated and stored in a table. For example, on a

CDC 3300 with floating point add time of six microseconds, a complex
array of size 80 X 80 can be transformed in 19.2 seconds. Besides the

main array, only a working storage array of size 160 need be supplied.
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This note describes and lists three programs, all written in USASI Basic
Fortran, which perform the discrete Fourier transform upon a multi-dimensional
array of floating point data. The data may be either real or complex, with a
savings in running time for real over complex (see Timing). The transform
values are always complex and are returned in the array used to carry the
original data. The running time is much shorter than that of any program
performing a direct summation, even when sine and cosine values are precalcu-
lated and stored in a table. For example, on a CDC 3300 with floating point
add time of six microseconds, a complex array of size 80 X 80 can be trans-
formed in 19.2 seconds. Besides the main array, only a working storage array

of size 160 need be supplied.

The exact operation performed is called finite discrete Fourier trans-
formation, also known as harmonic analysis or trigonometric interpolation.
Given an array of data DATA(I1,I2,...),

(I1-1)(J1~1)
wo(12-1)(32-1) 4 ’

TRANSFORM(J1,J2,...) = £ [DATA(I1,I2,...) W1

where Wl = exp(-2ni/N1), W2 = exp(-2mi/N2),... and Il and J1 run from 1 to
N1, I2 and J2 run from 1 to N2, etc. The Fortran convention of subscripts
beginning at one is adhered to. This summation possesses many of the proper-

ties of the more usual infinite integral

F(y) = 7) £(x) e 2WXY oy

=00
By interpreting the subscripts modulo N1, N2, etc. and requiring the data to
represent equispaced points, we can easily prove the usual properties about
linearity, orthogonality, inverse transform and relationship to convolution.

See Gentleman and Sande ([3], 1966).




There is no limit on the dimensionality (number of subscripts) of the data
array. A three-dimensional transform can be performed as easily as a one-
dimensional transform, though in a proportionately greater time. An inverse
transform can be performed, in which the sign in the exponentials is +,
instead of - . If an inverse transform is performed upon an array of trans-

formed data, the original data will reappear multiplied by N1*N2¥... .

The length of each dimension may be any integer, and as large as storage
will permit. However, the program runs faster on composite integers than on
primes, and is particularly fast on numbers rich in factors of two. For
example, on the CDC 3300, the following timings for a one-dimensional transform

have been calculated from the timing formula:

N Factorization Time for Complex Transform (sec)
Look 2 X 23 x 89 80
4095 3% x5 x 7 x13 ol
4096 ot2 6.2
Lo97 17 x 241 180
4098 2 X 3 x 683 480
4099 prime 2868
4100 22 x 5% x k1 39

Calling Sequence

The listings of three programs are given in the appendices. FOURL is a
subset of FOUR2, which in turn is a subset of FOURT. FOURT is the most general,
accepting multidimensional arrays of any size. FOUR2 is the same speed as
FOURT but accepts only complex multidimensional arrays whose dimensions are
powers of two. FOURL is much slower than FOURT or FOUR2, and performs only
one-dimensional transforms on complex arrays whose lengths are powers of two.
FOURL1 is intended mainly for pedagogical purposes; it is half a page of

Fortran, the others being much longer.




The calling sequences are:
CALL FOURT (DATA,NN,NDIM,ISIGN,IFORM,WORK)
CALL FOUR2 (DATA,NN,NDIM,ISIGN)
CALL FOURL (DATA,NN,ISIGN)

In all cases, DATA is the array used to hold the real and imaginary parts
of the input data and the transform values on output. The real and imaginary
parts of a datum must be placed into immediately adjacent locations in storage.
This is the form of storage used by Fortran IV, and may be accomplished in
Fortran II by making the first dimension of DATA of length two, referring to
the real and imaginary parts. If the data placed in DATA on input are real,
they must have imaginary parts of zero appended. The transform values are
always complex and replace the input data. Hence, the array DATA must always

be of complex format.

For FOURl, array DATA must be one-dimensional, of length NN. For FOUR2
and FOURT, it may be multidimensional. The extent of each dimension (except
for the possible first dimension referring to the real and imaginary parts)
is given in the integer array NN, which is of length NDIM, the number of
dimensions. That is, NN(1) = N1, NN(2) = N2, etc. ¥

ISIGN is an integer used to indicate the direction of the transform. It
is minus one to indicate a forward transform (exponential sign is -) and plus
one to indicate an inverse transform (sign is +). The scale factor l/(Nl*NQ*...)
frequently seen in definitions of the Fourier transform must be applied by

the user.

If the data being passed to FOURT are real (i.e., have zero imaginary
parts), the integer IFORM should be set to zero. This will speed execution
(see Timing). For complex data, IFORM must be plus one.

WORK is an array used by FOURT when any of the dimensions of DATA is not
a power of two. Since FOUR2 and FOURL are restricted to powers of two, WORK is
not needed. If the dimensions of DATA are all powers of two in FOURT, WORK

may be replaced by a zero in the calling sequence. Otherwise, it must be

As usual, the first subscript varies the fastest in storage order.
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supplied, a real floating point array of length twice the longest dimension
of DATA which is not a power of two. In one dimension, for the length not a
power of two, WORK occupies as many storage locations as DATA. If given, it

may not be the same array as DATA.

Double precision versions of these programs may be obtained by changing
the names to DFOURT, DFOUR2, and DFOURL, declaring double precision all
variables not beginning with the letters I, J, K, L, M or N, changing the
references to COS and SIN to DCOS and DSIN and assigning the correct precision
constants to TWOPI (2x) and RTHLF (0.5%). DATA and WORK must then be double

precision arrays.

Storage and Common

No common of any kind is used. An integer array of length thirty-two is
used by FOURT. FOURT is about four hundred Fortran statements long, FOUR2
about one hundred and twenty and FOURL thirty-seven.

Return and Error Messages

There are no error messages, error halts or error returns in this program.

If NDIM or any NN(I) is less than one, the program returns immediately.

Algorithm

A heavily modified version of the algorithm discovered independently by
Danielson and Lanczos ([2], 1942), Good ([4], 1958), and Cooley and Tukey ([1],
1965) is used. The following example is an application to a one-dimensional

transform of length six.

Let w = e_2ﬁ1/6. The transformation is written
to=do + dy + do + dg + da + ds
t1 = do + wdy +W2d2+W3d3+W4d4+ W5d5
ta = do + Wody + wido + wdg + wPd, + wOds




ts = do + wody + wodo + wods + w3d + wods

4
tg = do + widy + wBds + w3dg + wrCdy + w?Ods
ts = do + wod; + wOds + w34z + wPPdy + w12ds

Straightforward computation requires 25 complex multiplications and 30 complex

additions. The fast Fourier transform computes as follows:

ds
w3d3
dg
w3d4
ds

Wsds

uo =
g, =

gz =

do

do

dy
ug = dy
ug = dz
us = do
to = wo
t1 = ug Wus + w2u5
ts = uo + Wus + wWiuy
ts =
ts = w

t5=u1

+
+

+

+

+

+

+ uz + ug
+

+

+ wug + wug

+ wiu, + wouy

+ wug + wus

which requires only 13 complex multiplications and 18 complex additions. Note
that w* = -1 and w° = 1.

Such a reduction in computation can be found for any leugth which is a
composite integer. The algebraic proof may be found in the appendix. Also,
the various techniques for performing multidimensional transforms, real trans-

forms, etc. are discussed there.

Special Cautions and Features

The finite discrete Fourier transform places three restrictions upon
the data:
1l. The data must form one cycle of a periodic function. Alternately
stated, the subscripts are interpreted modulo N.
2. The number of input data and the number of transform values must

be the same.




3. The data must be equispaced in each dimension (though, of course, the
interval need not be the same for each dimension). Further, if in
any dimension the input data are spaced at interval dt, the resulting transform
values will be spaced from O to 2n(N-1)/(Ndt) at interval 2x/(Ndt) as I runs
from 1 to N. By periodicity, the upper limit is identified with -2n/(th) and
in fact all points above the "foldover frequency” =/(Ndt) are to be identified

with the corresponding negative frequency.

Those familiar with other implementations of the fast Fourier transform
may be aware that the order of the data is scrambled in the course of execution.
Unscrambling is performed automatically, however, and both the input and output

values are placed in ordinary sequential arrangement.

Timing
Let Ntotal be the total number of points in the data array. That is,
= * *..l' i i i
Ntotal N1*N2 Decompose Nfotal into its prime factors, such as
K2_K3 K5 ! -
2 35 eees Let Zo be the sum of all the factors of two in Ntotal’ that is,
o = 2¥K2., Let Zf be the sum of all the other factors, Zf = 3¥K3 + 5%K5 + ....

The time taken for a multidimensional transform is
T="To + Ntotal [Tl + ToZo + sz,f] .
For the CDC 3300,

T = 3000 + Ntotgl [600 + LOZo + 175Z¢] microseconds.

The greater optimization apparent for factors of two is due to

1. The eight-fold symmetry of the trigonometric functions from O to 2mx.
2. The fact that Fourier transforms of length two and four require
fewer complex multiplies than transforms of other lengths.

The above timing formula is accurate for complex data.

The use of real data (IFORM = 0) can reduce running time by as much as

forty percent. On the CDC 3300, a 64 x 64 complex array was transformed in




6.1 seconds; a 64 x 64 real array took 4.2 seconds. A complex array 1500 long
took 6.1 seconds, while a real 1500 array ran only 3.4 seconds.

Accuracy

The simplistic idea about accuracy is apparently correct: because the
fast Fourier transform takes fewer steps in execution, less error creeps in.
Gentleman and Sande ([3], 1966) show theoretically that the root-mean-square

relative error is bounded by
i
= -b
2 3/a
1.06 Nfotaq 2 ZJ.[BfJ.] /

where b is the number of bits in the floating-point fraction and fj are the

factors of Ntotal-

Further error is introduced in this particular program by the use of
recursive generation of sines and cosines for factors of Ntotal other than
two. Sines and cosines needed for factors of two are computed precisely. In
actual practice, out of eleven and a half digits representable on the CDC 3300,

about four were lost on long one-dimensional sequences like 1500 and L4096.

Applications

Besides all the direct uses of discrete Fourier transforms in signal
processing, lens design, crystallography, seismic studies, etc., Fourier
transforms find application in techniques of correlation and convolution. The
principal tool here is the convolution theorem. Denoting the convolution of

two discrete functions f and g by f*g
£% = 3, T, .
where both j and k run from 1 to N and subscripts are interpreted modulo N,

and denoting the discrete Fourier transform of f by F(f), the convolution

theorem states

F(f*g) = F(f) F(g).




The difficulties here are that cyclical interpretation of subscripts may
not be desirable and that N may not be convenient for fastest processing via
the fast Fourier transform. Appendage of zeroes to the ends of the sequences
solves both problems. See Stockham ([5], 1966) and Gentleman and Sande ([3],
1966).

Examples of Use

A. FOURT

1. Forward transform of complex 50 X LO array in Fortran II
DIMENSION DATA (2,50,40), WORK (100), NN (2)
NN (1) = 50
NN (2) = 4o
D01 I=1, 50
DO1 J=1, k4
DATA (1,I,d)
1 DATA (2,1,J)
CALL FOURT (DATA,NN,2,-1,1,WORK)

real part

imaginary part

2. Same example as 1, but in Fortran IV

DIMENSION DATA (50,40), WORK (100), NN (2)
COMPLEX DATA
DATA NN/50, 4o/
D1 I=1, 5
D1 J=1, 4
1 DATA (I,J) = complex value
CALL FOURT (DATA,NN,2,-1,1,WORK)

3. Same example as 2, but in double precision
Add the following statement:
DOUBLE PRECISION DATA, WORK
Change the call to:
CALL DFOURT (DATA,NN,2,-1,1,WORK)




4. Inverse transform of real 64 X 32 array in Fortran IV

DIMENSION DATA (6k4,32), NN(2)
COMPLEX DATA
DATA NN/6k4,32/
D01 I=1, 64
D01 J=1, 32
1 DATA(I,J) = real value
CALL FOURT (DATA,NN,2,+1,0,0)

B. FOUR2
Inverse transform of real 64 X 32 array in Fortran IV

DIMENSION DATA (64,32), NN(2)
COMPLEX DATA
DATA NN/6k,32/
DOl I=1, 64
D01 J=1, 32
1 DATA(I,J) = real value
CALL FOUR2 (DATA,NN,2,+1)

C. FOURL
Forward transform of real array of length 2048 in Fortran II
DIMENSION DATA (2,2048)
DO1 I=1, 2048
DATA(1,I) = real part
1 DATA(2,I) =0
CALL FOURL (DATA,2048,-1)
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Appendix I

Historical Sketch

In 1903 Runge published schemes for the optimal computation of twelve and
twenty-four point Fourier transforms ([6]). They involved grouping and re-
grouping of values in a mamner similar to the modern FFT. Runge's schemes
are well known and appear in many works on numerical analysis, including
Runge and Konig ([7], 1924) and Whittaker and Robinson ([8], 1944). Neverthe-
less, no one thought of generalizing Runge's ideas until 1942 when Danielson
and Lanczos ([2]) published an optimal algorithm for N - 2K point transforms.

Their paper passed unnoticed.

Meanwhile, in 1937 Yates ([9]) had devised an algorithm for the efficient
computation of the interactions of 2% factorial experiments. This involves
sums of the form S PRI

tj =% di(_l)loJo 1i1Jaite..
where ipi; ... and joji... are the binary representations of i and j.
Davies et al extended the method to 3" experiments ([10], 1954); three years
later, Good, in an abstruse paper, extended it to general factorial experiments
([4], 1958). In the same paper, Good devised analogous algorithms for N point
Fourier transforms, where N is decomposable into mutually prime factors.
Cooley and Tukey removed this restriction and clarified Good's argument ([1],
1965). They also wrote what was probably the first computer program to
perform FFT.

Cooley and Tukey's paper sparked a resurgence of interest in the Fourier
transform. Despite its indispensability in many areas of signal processing,
the Fourier transform had long been avoided for reasons of long computation
time. The FFT revived interest to such an extent that the IEEE Audio Trans-
actions has devoted an entire issue to it (June 1967) and three groups have
proposed implementing it in hardware ([11], 1963; [12], 1967; [13], 1967).
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Appendix II

The Mathematics of the Fast Fourier Transform

Mathematical descriptions of the algorithms used in the Fast Fourier

Transform subroutines will be published in the near future.

Punched decks for these three subroutines are available from J. J.

Fitzgerald, J-105, or from SHARE.
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Appendix IIT

Listing of the Fortran Subroutines

The listings of the three subroutines FOURL, FOUR2, and FOURT are given

on the following pages.

A1l three are written in USASI Basic Fortran, and,

as such are compatible with the great majority of Fortran compilers.
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SUBROUTINE FOURLIDATASNNGISTION)
THE COQLEY~TUKEY FAST FOURTER TRANSFORM IN USAS] BASIC PORTRAN
"TRANSFORM(J) ‘s SUM(DATACI)wWew((teg)o(gal))): WHERR ! AND :\J RUN
FROM 1 TO NN AND W -® :BEXP([S]GN®2*P$eSQRT(al)/NN), DATA IS A ONE-
DIMENSTONALCOMPLEX ARRAY {} B o= THEREAL-ANDIMAQINARYPARTS -OF -
THE DATA ARE LDCATED IMMBDIATELY ADJACENT IN STORAGE: SUCM AS :
‘FORTRAN 1y PLACES- THEM) WHOSE LENGYN NN 1S A POWAR OF TWO, ISIGN
1S #1 OR =& GIVING THE SIGN OF THE TRANSFTORM, TRANSFORM VALUES
ARE RETURNED IN ARRAY DATA, REPLACING THE INRUT DATA. THE TINE IS
PROPORTIONAL TO NeLOG2(N), ‘RATHER THAN 'THE USUAL N*«2, 'WRITTEN BY
NORMAN BRENNER:s JUNE $967, TH]S I8~ ru&*swcxraervanito
OF FFT KNOWN TO THE AUTHOR, AND IS INYENDED MAINLY FOR 2
DEMONSTRATION, PROGRAMS ‘FOURZ AND FOURT amE - AVALLAGLE TWaT AUN
“TWICE AS FAST AND OPERATE ON MULTIDIMENSTONAL ARRAYS WWOSE
DIMENSIONS ARE NOT RESTRICTED YO POWERS OF TWO, (LOOKING yP S:NES
AND COSINES IN A TABLE WILL 'OUY RUNNING 'TIME :OF FOURY 'BY A THIRD,)
SEE~= {EGEAUDIO TRANSAGTIONS —(JUNE-394) ), SRECIAL - 1SSUB-ON PP T,
DIMENSION DATALD)
‘NR2eNN
Jwi
po 5 l'laNuZ
Ire1=J14,2,2
1 “YEMPREDATALI ) =
. TEMPISDAYi(J*1)

DATAL I SDATAL ]

DAYAT S+ L IRDATAC T+ 1)

DATAC])AYEMPR

DATA(!‘&)-TEMpI .
N — — -

IP(J=MI5:5.4

SR : : = =

W - - ——

IP(M=R225:3+3
5 IJnJeM
— i —— - = —
= t?!ﬂ!ﬁ!lﬂ!¥t9t' = =———— =
== IS TEPRRENNAX—— : . -

— D0 8 MEL MMAX; 8
‘THETASS 1415926535-ru051txntan-(n-s):/rgoachnAx)
WRECOS( FNETA) ‘
———N}e§l g{?ﬂ%&i‘“"—*ﬁ,———;’:—***' —
— ~bo. E }'Si?h"?" — = — =—— S
SR FeMNAN—— - = —
‘?lﬂrhﬂfﬂfﬂ.ﬁ-ﬂfﬁﬂﬁﬁn e
‘YEMPIUNRYDATA(JoL)oNIODATACY) : '
lDlTA!J}lDAYAt:)-TIHPR
== PATALJeL ) aDATAL Pat ) z = = = .
qui Fﬂtﬂﬁhfﬂﬂ E = —— =
‘8 DATA iiébi;st}ti?ti!ﬂf% ==
18010 6

9 'RETURN

= m e e e s T

ol

qnno

dooadaadaoaaan

(|| o ol 0
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aadoaoadaadaoaqadaaadaadacadadacadacagocaadaddooaaddoocadadoa

CTHE COOLEY=TUKEY- FAST FOURLIER 'TRANSFORM IN uunsxultsxc PORTRAN
"YRANSPORM¢J3tJHa-.;3~' tUﬂGBI!tlzictlo; g)tiz'ttttiti?'tdiﬂti’ :

SUBROUTING FOURZ(DATAINN/NDIM/ TSDAN) =

RLTTL2Y] fCJ! 3)'; it
WHERE 11 AND J1 RUN FROM .1 ?O’Nﬂtif iN Wiwk ‘tsf vivhle
SQRT(aL)}/NNES) 2y ETC,

BATA- TS & MULTIDIMENSTIONAL FLOATING “ROINT ARRAY ALLOF WKOSE-

DIMENSIONS ARE POWERS OF TWO, THE LENGTH OF sBACH BIMENSlON 1§
STORED IN THE INTEQER ARRAY NN, OF LENGTH NDIM, 1SION IS

-« DR =%, GIVING THE SIGN OF Tui*?nAntrcnn. “THE RBAL

AND IMAGINARY PARYTS OF A DATUM :ARE .IMMBDIATELY ADJACENT IN STORAQE
(SUCH .AS FORTRAN IV RLACES 'THEM), 'TRANSFORM :RESULTS .ARE RETURNED
IN ARAAY DATA, REPLACING THE ORIQINAL DAYA, TINE 1§ PROPORTIONAL

‘Y0 N*LOGR(N)+ RATWER TWAN THE USUAL NeeR, NOTE THAT IF A FORWARD
“TRANSFORM 1S FOLLOWED BY AN INVERSE TRANSFORM; TWE OR}SINAL DATA

WILL REAPPEAR MULTIPLIED 8Y NN(:?‘NNfi)'...! BXAMBLEwe

FORWARD FOURIER TRANSFORM OF A 'TWO=DIMENSIONAL ARRAY IN FORTRAN 1!
DIMENSION DATA(Z2,64,32):NNCR)

NNT{1)sb4

NN{2)832

DO 1 151464

Do 1 J*1.:32
DATACLs [ ¢ JIRREAL PARY
DATAC2/, 10 J)BIMAGINARY PART
TALL FOURZUDATA,NNs2798)

SAME EXAMPLE IN FQRTRAN 1V
DIMENSION DATA(64,38)/NNE2)
COMPLEX DATA

DATA NN/64,32/

DO 1 1%1.64

DO 1 J*1.:32
DATA(1»JInCOMPLEX VALUER
CALL FOURZ(DATA,NNs2r"Y)

PROGRAM BY NORMAN BRENNER FROM THE BASIC PROGRAM BY 'CHARLES
RADER, ~MAY 1967, THE IDEA FOR TME DIOIT REVERSAL WAS SUQOESTED
BY RALPH ALTER. S

THIS VERSION OF THE FAST FOURIER TRANSFORM [S THE FASTEST ‘KNOWN

TO THE AUTHOR, LOOKING UP SINBS .AND :COSINES IN A TABLE INSTEAD OF
COMPUTING THEH WOULD DBCREASE RUNNING TIME SEVEN RERCENT,

PROGRAMS FOURT AND FOURL ARE AVALLABLE ‘FROM THE AUTHOR MNMAT ALSO
PERFORM THE FAST FOURIER TRANSPORM AND ARE WRITTEN N USAS1 BAS!C
FORTRAN FOURT 1S THREE TIMES .AS L ONG, 1S NOT RESTRICTAD T0
FOHERS 6? TWO, AND RUNS UP TO FQRTY PERCENT 'FASTER ON REAL DATa,
FOURL IS ONE FOURTH AS LONGs» CNE HALF AS FAST) AND [S RESYRICTYRD
TO ONE DIMENSION AND 'POWERS OF TWO,

SEE=< [EBE AUDIO TRANSACTJONS (JUNE 1967), SPECIAL I8SUE ON FFT,

DIMENSTON DATACL) ,NN(1)
IF(NDIM=4)700,3,1
NTOTS2

B0 2-IDINELNDIN
IF(NNLIDIM)2700,700,2
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“Ooaoa

110

120
130
140
150

340
350
2360
370

‘380

NTOTENTOTONN(IDIN)
RTHLFE, 70710 67842
TNOP1#6528318 53070

MAIN LOQGP 'FOR EACH DIMENSION
NPLn2

DO 600 IDIMEL,NDIM
NENNCIDIM)

'NP2ENPLWN

IF(N=1)700,600,100

'SHUFFLE ‘DATA BY 81T REVERSAL:, SINCE Nm2eex, A8 THE SKUFFLING

CAN BE DONE BY SIMPLE INTERCHANGE, NO WORKING ARRAY ]S NEEDED

NP2NFaNP2/2

Jui .
DO 160 1231,NP2,NPY

IFtJ=12)410,130,430

J1AMAXS]28NPL~2

DO 120 i=12s]iMAX,2

D0 120 13«l1,NTOT,NP2

JIsJe13=12 .
TEMPRaDATA(]3)

"TEMPIEDATA(}S+1)

DATA(I3)SDATA(JS)
DATA(}3#L)sDATA(JI»1)
DATA(J3YATEMPR %
DATA(J3+L)sTEMP]
MENP2HF
IF(J"M?1604160,150
JugnM

MamM/2 :
IF{MNP1Y1602140,140
RENLL

MAIN LOOP, PERFORM FOURIER TRANSFORMS :OF LENGTH FOUR: WITH ONE OF
LENGTH TWO IF NEEDED, TME TWIDDLE FACTOR WAGXP(]SIGNw2wPle
SORT{=L)*M/(AeMMAX) ), -CHECK FOR THE SPECIAL CASE Wu]SIGNwSQRT(o1)
AND REPEAT FOR WaWe(1s]SIGN'SGRT¢=3))/SQRT(2),

NPL{TWENPL+NP1

TPARSN
{F{1PAReR)350,330,320
IRARBIPAR/4

60 70 3180

DO 340 iwi,Npl,2

DO 340 K&m]3,NTOT,NPLTHW

“K2sK1eNPY .
‘PEMPREDATA(KR)
"TEMPIEDATACKZ4) .

DATA(KRIUDATA(KL }aTEMPR
DATACKE@L)3DATA(K1e1)=TEMP]
DATA(KL)SDATA(KL)}oTEMPR

DATA(KLI9L}sDATA(KLIwL)}eTENPY

MMAX¥NPL

TF{MMAXaNPRHF 370,600,600
LMAXRMAXDENPLTYW  MMAX/R)
DO 570 LANRLsLMAX,NPLTHW
M|

IPEMMAX=NPL 142074204360

TRETAR=YWOP [ *RLOAT(MI/FLOAT (40MMAX)
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TP IS TONIAUTI 303N —

THETAS=THRETA

WRECOS{TWETA)

NISSIN(THETA)

WARRWROWR=W]*W]

WETER VNN

WIREWZREWRPNR K]

WIIONRROWIsWZ T *WR

DO 530 1isLl,NpP1,2

'KMINSIPAReMS 1]

JPUMMANSNPL) 430,430,440

“KMIN®IL

‘KDIFSIPAROMMAY

KETERPudUNDLF

DO 520 KLeKMIN/NTOT KSTEP

K@nKiekDIP

‘KIsKRaKDIP

KAaKIsKDIT:

‘l?iﬂﬂii'ﬁ’i}‘tﬁo“ﬂl"ﬂ

UiRsDATA KL Y eDAYA{KD)

UL TeDRTRIKESL ) S DATAtNGwL)

UBRADATA(KI)*DATA(NE)

U21eDATAIKSeL)*DATA(KSL)

UINDETAIRLIODATALREY —

UITeDATALKRSL ) aDATA(RENL)

IPLIBIONIA704475,475

TTUARRDATA IR Bl Y uDATA (Kdal)

UQIUDATA(ld)’nltlcnl)

60 70 $19

TARSDRTAIRAR L) DATAINI L) -

at;;;;!&t!ﬁgyalyAtlcl

90 10 Bid

YIRANREBATACKR Y oW T *DATA (KAL)

‘TRIeWEREDATA(KAoL Yo WA @DATACKR)

TJRIHR'DITAtKl)-H:GDATAtKSOt!

HREDATR (KT IoWTwDATAIND)

:lﬁj!!l{}liﬁ‘i&ill'Bi?lt&&ttl
sHIRADATAINAT )aRI]oDATAINA}

Uil‘ txiyerar

'uxlonxthtxt*l$'!2!

UARSTIRST 4R

b aietreran
83¥!§§§11§t*§3‘¥ll
“IPCIBIONY D 0800,900
UARETIIeT 4] ,
UsisTARNTIN

= ELSiS i
$00  UARSTAIslIl
— U4eTIRstan

b’ 7fﬂilivtl>
DATALKAPL )OUIt*u!l
DATALKRYIPUSRPUAR

KA !tu!g-u;:
PO IRNINe13D0 8




B3——continug—

MENSLMAX

 IR{MeMMAX) 540,540,970

W40 [FCISTONISS0sS60 1560
550 ‘YEMPRBNR

WRE(WR®H ) «RTHLF

WA WITERTRET
WEIS(TEMRROW] }eRTNLY
40 10 410’

P70 OONTINUE: ——

600.  'NRSONRR
‘700 CRETURN
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SUBROUTING FOURTIDATAINNIND THT FHTANTTFORMI WORKY
THE COOLEYSTUKEY FAST FOUREER TRANSFORM IN USAS] BASIC PORTRAN

ra;nsrnnnzg;;Jz.,,.; = suu;alz;txzati.. sreMgret{lsel}etiani))

C oanper ({1l el Rel) 10 eag )y =
WHERE 11 AND J1 AUN FROM .1 TO NNCI) AND WiugX ttstGNtI-n!-
SQRT ¢=L)/NNCL) ), -ETC, 'TWERE 18 NO .LEMIT ON THE DIMENSIONALITY
(NUMBER ‘OF SUBSCRIPTS) OF TKE DATA ARRAY, [F AN INVERSE
TRANSFORM _CISTON®#1) 1S PERFORMED -URON AN -ARRAY-OF " TRANSFONMED
{181GN®=L) DATA, THE ORJOINAL DATA WILL REAPREAR: -
MULTIPLIED BY NNULYONNC2) 9y, THE ARRAY OF INPUT DATA MUST BE
IN COMPLEX FORMAT, HWOWEVER: I7 ALL TNAGINARY RARTY ARE Z&m0 ({,E,
THE DATA ARE DISQUJSED REAL) RUNNING ‘YIME 318 :CUT UP TO PORTY ‘RER-
CENT, (FOR FASTEST TRANSFORM OF REAL DATA, NNC1) SHOULD BE :EVEN,)
THE TRANSPORM-VALUES ARE -ALNAYS OOMPLEX; ANDAREZRETURNED—IN TNE
ORIGINAL ARRAY :OF DATA, REPLACING THE INPUT DATA, THE LENGTH
OF EACH DIMENSION OF TME :DATA ARRAY MAY BE ANY [NTEGER, ThE
PROGRAM RUNS FASTER ON COMPOSTTE INTEGHRS THAN ON PRIMES, aAND xs
PARTICULARLY FAST ON NUMBERS (RECH IN ‘PACTORS OF TWO,

TINING=IS IN FACT uxvsn BY “THE-FOLLUOMING FORMULA —LET NYOY BE-THE
‘TOTAL NUMBER OF POINTS (REAL :OR COMPLEX) [N THE DATA .ARRAY, THA?
1S) NTOYENNCL)*NN(2)%,yy DEOOMPOSE NYOT INTO IVS'BRINE FACTORS:
SUBH AS 2#%KZ » J#+K3 + SeekS » ,,, U7 SUNZ BE TwE 8UM OF ALL
TKE FACTORS OF TWO IN NYOT, THAT 18, :SUMR ‘s '2#x2, LET JUMP BE

THE SUM OF ALL OTWER FACTORS :OF NTOT, THAT 18) SUMF '8 (J¢KJeHeKSe,,
THE TIME TAKEN BY A-MULTIDIMENSIONAL TRANSFORM:ON-THESE-NTOT DATA
1S T 5 T0 « NTOT#(T1+T2«8UMa+TI®SUMF), ON THE :CDC 3300 (FLOATING
POINT ADD TIME-= S§IX MICROSECONDS), e 3000 % NTOT#(400+40¢8UMEe
1{75%SUMF) M]JCROSECONDS ON COMPLEX TATA,

IMPLEMENTATION OF THE DEFINITION :BY SUMMATION WILL RUN IN 4 TIME
PRDPORYION&L TO NTOTYINNCLIYONNERY* ey  FORNIGHLY OONIOSt?I’NTBY
THE SAYINGS OFFERED BY TH]S PROGRAM GAN BE DRAMATIC, 4 ONEwDIMENs
SI1ONAL ARRAY 4000 N LENGTW WILL 'BE TRANSFORMED IN cooottcno-
40%(2424242%2)%175%(55¢5)) = 44,5 SECONDS SERSUS ABOUT 4000w
4000*175 = 2800 SECONDS FOR THE STRAIGMTFORWARD TECHN]OUE,

THE FAST FOURJER TRANSFORM 'PLAOES THREE RESTRICTIONS URON ‘THE
DATA,

1, THE NUMBER OF INPUT DATA AND THE NUMBER -OF TRANSFORM VALUES
MUST BE THE SAME,

2, BOTH THE INPUT DATA AND THE TRANSFORM VALUES MUST REPRESENY
EQUISPACED POINTS IN TMEIR 'RESPECTIVE DOMAINS OF TIME .AND .
"FREQUENCY, CALLING THRESE SPACINGS DELTAT aND DELTAF, IT MUST BE
TRUE TWAT DELTAF=2+Pl/(NN(J)*DELTAY), OF COURSE, 'DELTAY NEED NOT
BE THE SAME FOR EVERY DJMENSION

3, CONCEPTUALLY AT LEAST, THE iNPUT CATA AND THE “TRANSFPORM OUTRUT
REPRESENT SINGLE CYCLES OF PERIODIC FUNCTIONS,

THE CALLING SEGUENCE [Se=
CALL FOURT(DATA,NNsNDIMs ESIGNs IFORM,WORK)

DATA IS THE ARRAY USED TO WOLD THE :REAL AND IMAGINARY ‘PARTS

OF TWE DATA ON INPUT AND THWE TRANSFORM VALUES ON OUTPUT, IT

1S A MULTIDIMENSIONAL FLOATING ‘POINT ARRAY, WITH THE REAL AND
IMAGINARY PARTS OF A DATUM STORED IMMEDJATELY ADJACENT N -STORAGE
(SUCH AS FORTRAN !V PLACES THEM), !NORMAL FORTRAN QRDERING [8
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Pey

n

EXPECTEDy THE FIRST SUBSCRIPT CHANGING FASTEST, THE DIMENSIONS
ARE GIVEN IN THE-INTEGER ARRAY NNy :OF LENGTH NDIM, [ISIGN 15 :-=4

TO INDICATE A FORWARD YRANSFURM (EXPONENTIAL SI1GN 1§ =) AND o4

FOR AN INVERSE TRANSFORM (SIGN IS ¢), IFORM IS +1 I¥ “THE DATA ARE
COMPLEX: 0 IF THE DATA ARE REAL, [IF [T IS 0, THE IMAGINARY

PARTS OF THE DATA MUST BE SET T0 .28RQ, AS EXPLAINED ABOVE, THE
TRANSFORM VALUES ARE ALWAYS COMPLEX AND ARE-STORED IN-ARRAY -DATA;
WORK 1S AN ARRAY USED FOR WORKING STORAGE, [T IS FLOATING POINT
REAL» ONE DIMENSIONAL OF LENGTH EQUAL T0 'TWJCE YHE LARGESY ARRAY
DIMENSION NNCI) THAT IS NOT A PCWER OF 'TWO, IF ALL ‘NN(I) ARE
POWERS OF TWO, IT IS NOT NEEDED AND MAY BE REPLACED BY ZERO IN THE
CALLING SEQUENCE, THUS, FOR A ONE=DIMENSJONAL ARRAY, NN(1) 0DD,
WORK OCCUPIES AS MANY STORAGE LOCATIONS AS DATA, ~IF SUPPLIED:
WORK MUST NOT BE THME SAME ARRAY AS DATA, ALL SUBSCRIPTS OF ALL
ARRAYS BEGIN AT ONE,

EXAMPLE 1, THREEeDIMENSJONAL FORWARD FOURJER TRANSFORM OF A
COMPLEX ARRAY DIMENSIONED 32 BY 25 BY .43 N FORTRAN IV,
DIMENSION DATAC32,25,13) )HORK(50) sNNC3)

COMPLEX DATA

DATA NN/32,25,13/

DO 1 1%1.32

DO 1 J%1.25

DO 1 K*1,13

DATAC1+JsKISCOMPLEX VALUE

CALL FOURT(DATA,NN23791:1/WORK)

EXAMPLE 2, ONE=DIMENSJONAL FORWARD TRANSFORM OF A REAL ARRAY OF
LENGTH 64 IN FORTRAN 11,

DIMENSION DATA(Z,64)

DO 2 [%1.164

DATACL) [ )RREAL PARY

DATAC2.])80,

CALL FOURT(DAT‘ 64,1s°4.0,0)

TNERE ARE NO ERRQOR MESSAGES OR :ERROR /WALTS IN TH1S PROGRAM, 'TKE

‘PROGRAM RETURNS IMMEDIATELY IF NDIM QR .ANY NNC1) I8 LESS THAN ONE,
RROGRAM BY NORMAN BRENNER PROM THE .BASIC 'PROGRAM :BY CHARLES

RADER, JUNE 1967, TYHE IDEA FOR TWE DIGIT REVERSAL WAS
SUGGESTED BY RALPH ALTER,

THIS—1S THE FASTEST AND MOST VERSATILE VERSJON OF 'THE FPT KNOKWN

“T0 THE AUTHOR, A PROGRAM CALLED FOUR2 18 AVAJLABLE 'THAT ALSO

PERFORMS THE FAST FOURIER TRANSFORM AND IS WRITTEN IN:USAS] BASIC
FORTRAN; IT IS ABOUY ONE THIRD A4S LQNO AND RESYRICTS ‘THE
DIMENSIONS OF THE INPUT ARRAY (WHICW MUST BE .COMPLEX) 'TQ BE POWERS
OF TWO, ANOTHER PROGRAM, CALLED FOURL, 1S ONE TENTH AS LONG AND
RUNS TWO THIRDS &S FAST ON:A ONE'DSHINi!ONAL OOMPLBX ARRAY WMOSE
LENGTH |S A PQOWER OF TWO,

=

REFERENCE=~
1EEE AUDJO TRANSACTJONS (JUNE $967), SPECIAL !SSUE ON ‘THE FFPTY,

DIMENSTON-DATACL) ) NNCL I IFACT (IR )+ HORK(L) =

'THUP!IG*283185307

RTHLFa, 70710 67812
TPENDIMRL)920,1,1
NTOTR2

DO 2 IDIMsi,NDIN
IPENNCIDIMNIIR20 920,42

NTQTSNTOTeNNIIDINM) |
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MATN LOOP FOR EACTH DIMENSION

NPie2

DO9L0 [RINSI NDIN
NaNNULIDIM)
NPZSNPLIeN
IFEN=3) 920, 90045

1S N A POWER QF TWO AND IF INOT, WHAT ARE I!SHFACﬂPRS

MBN
NTWOBRNPY
L}
ID1Veg
1QuoTeM/ DIV
tREMEN=FDTVIQUOT
IPLIQUOYSIDIVESGa1ia 1l
IP{IRENIRDS 12520
NYWOSNTWOeNTHD
IPACT(IPYnlDlY
IFs[Fel
NEIOUDY =
[o-T0-19
1pyved
INONZRIT
!GUOV-M‘!DXV
IREMEMeID]IVY*IQUOT
TFLTOUBYRIDIVISN 3131
IPLIREN} 4D, 38,40
IFACT IR0V
IFeiFel
nulauuT
G0 7030
= rat?'ﬂ}“i
ge=10-3§
INONZS [T
rrcxiinfi!oat.co )
NTWORNTHOSNTHO
180 Y0 70
"frrse?tttiua' ———

£ SERARATE FOUR CASgSe= : —
= '*"*’*"1.-gﬁnrr:¥“:ﬂnlromr R REAL TRANSTORN FOR THE €TH; ST, 070
c [MENS 1 ONS
2, REAL TRANSFORM FOR ‘TWE '2ND 'OR 3RD DIMENSION, WETHODew
©CTRANSFORM MALFTME DATA) SUPRLYING®

= sriaE—— waum'a 002

== oRM FOR _,iR# METHOD =
= rﬂﬁtﬂiwtﬂinvww = ti_* =
¢, RE1L TRANSROAN FOR Tub 187 1D NARBION, N WVEN, MENOBEs
rnnnuronn A COMPLEX ARRAY OF LENGTH IN/2 WHOS IIAL'IAR?'

ARE— N ONUNRERED REAL YALUES
AR tRE- ﬁﬁﬁ NUMBERED REAL WALUES,
f#%lfliﬁsﬂﬁ~ﬂihf IY’QBﬁJﬁltffziiiﬂliltg




110 'pl:nt-nOOIQ |

T = : '
‘200 NWORKWRON e ERTESEIEE
_D0 224 {}» Lk ST

210 uoa 1 z H43 g}
uom ¢ mmm:
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250

260

70

QOO0 N

308

310
320

330

340
350
360
370

380

390
400

410

420

430
440
450

460

470

e e———

I FIEES "

IreiFal - =
IP{IFPEeNPLI260,260,3%0 o ) S
CONTINVE

1aMAXR [ JaNPReNPL

1uy

po 270 r:-xa.xannxanpz
DATA(I2)aNORK(])
DATA(T24L)aWORK(Te1)
[eie2

WATN LOOP FOR FACTORS OF “THO; “PERPOAN-FOURTER-FRANSFORNS of ——
87w TWO [P NEEDED, THE TWIDDLE PACTOR
WREXP(1S1GN*2#PLSORT (oLl oM/ (4RHMAN)], ‘ONBCK FOR WAISTON®SARTE=1)

LENGTH FOURs WITH ONE OF .LEN
AND REPEAY FOR H'W‘(l‘!SIUN'IQITG li?/&nﬂY[?!;

IF{NTWOeNPL)600,600,309
NPiTWaNPRLeNP1
IPARINTWO/NPL
IF(IPAR=Q)350,330,320
TRAR®]PAR/4

G0 TO 310

DO 340 Ji=1,11RNG,2

DO 340 KLsl1aNTOT, NPLITH
K2aKi+NPY

"TEMPREDATA(KZ)
TEMP1aDATA(K241)

DATA(K2)®DATA(K1)eTEMPR
DATA(K2«1)=DATA(KLI#Ll)"TEMP]
DATA(KL)WDATA{KL)&TEMPR
DATACKA®L)BDATA(KIe1}*TENP]
MMAX3INPL
IF(MMAX=NTWO0/2)370,600,600
LMAXSMAXO (NPLTW,MMAX/2)

DO 570 LINPL2LMAX,NPLTW
MRl

IF{MMAXeNPL1)420,420,380
THkT"'THOPl’FLOlT(L)IFLOAT(Q'MHAX)
IFC1SIGNY4004390,390

‘THETA==THETA

WRaCOS(THETA)
WIaSINC(THETA)
W2RBWR*WReH [ *W ]

Wera2 *WRei]
WIRSW2ROWR~W2]*W]
W3laW2R*WI+W2]*NR

PO 530 li=1,11RNG,2
KMINSI1+1PAR"M
IF{MMAXaNPL1)4A30,430,440
KMINZTL

KDIF=TPAROMMAX
KSTER349KDIF
IF(KSTEPANTWO)460,460,530
DO 520 KLeKMINsNTOT.KSTEP
K2aKi+KDIF

K3aK2«KDIF

K4sKI#KDLIF
IF(MMAX=NP1)470,470,480
ULRSDATA(KL}*DATA(KR)
ULI®DATACKL®2)*DATA(KEeY)
U2REDATACK3)*DATA(KS)

24

_—




471

472

480

490

500
510

820

530

540

550

860

570

so00aAnn

U218DATA(KI*1)*DATA(K4As])
USReDATA(KL)=DATA(KZ)
U3=2DATA(KL*1)=DATA(KZ#Y)
IF(ISIGNY4710472,472
U4REDATA(KI*L)=DATA(K4+L)
U41=DATACKA)=DATA(KS)

G0 TO 610
U4RZDATA(KA®1 ) =DATA(KI#Y)
UAISDATA(K32"DATA(K4)

G0 To 510

T2ROW2RWDATA(KZ) =W2]*DATA(KZ1)

T21sW2RIDATA(KE*1)eW2]wDATA(KE)
TIREWR*DATA(KI ) oW oDATA(KIL)
TIISWR*DATA(KI*1)eW]vDATALKY)
T4RZWIR®DATA(KA) »WI]*DATACKE41) =
TAT=WIRODATA(KAe1)oWI ] ¢DATA(KE)
ULRRDATA(KL)*T2R :
UL113DATALKL®1)+T2]

URRETIR*T4R

U21eT31=T4]

UBR=DATAIKL)*T2R
U3T=DATA(K1*1)=T72]
IF(ISIGNY490,500,500
UARETII=T4]

U41=T4R=T3IR

G0 Y0 518

UARST4}%T3]

U41=TIRIT4R

DATA(KL)=BULR*U2R
DATA(KL®1)=aUl1+U2]
DATALKZ2)3UIR*U4R
DATA{KZeL)mUI T+ 4]
DATA(KI}sUIRoy2R : -
DATAIKS*1)ayit=y2}
DATA(KA}RUIR=Y4R
DATA(KA®L)aU3t=y4]

KDIFSXSTEP

KMINSA?IKMIN®T1) 11

60 TO 450

CONTINUE

MEM*| MAX

IP(M=MMAX)540,540,570
IFLISIANISS50:560,560

‘TEMPREWR

WRS{WR*WIY*RTHLF
WIRtWETEMPR) «RTKLT

60 TO 410

TEMPREWR
WRN(HR=W] ) *RTHLF
WIS{TEMPR&W] }«RTHLF

60 YO 4410

CONTINUE
IPAR=3® I PAR
MMAXSMMAX #MMAX
G0-T0-360

MAIN LOOP FOR FACTORS NOT BCUAL TO 'TWO, -APPLY THE TWIDDLE FACTOR
WEEXP(ISTGN®RWPTSORT (=t ettt vt 2aeitl )/ (IPREIPPRI), THEN
PERFORM A FOURLER TRANSFORM OF .LENGTH [FACT(IF): MAKING 'USE OF
CONJUGATE SYMMETRIES,

[F{NTWO=NPR2605,700;700
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BU5 — IFRIANTHD

TFeINON2
NRLKFaNPL/2
610  IFR2SIFACT([F)*IFpPY
JIMINaNPLal
1P CJIMINSIFPLI)EL5, 615,640
€19 DO 635 JYRJIMINIFRIINRL
THETAS*TWOP I *FLOATIJELY/FLOATOITPD)
IPCISIGN)6250620.620
620 THETAS*THETA
$28—WSTPRACOS{THETAT =
= WSTPIaSIN(THEYA)
HRSWSTPR
WIaWSTP]
JEMINNJLeIFPL
JeMAXuJi*IFP2e[FPL
DO0-635 JEngaNINGFJINAXIFRY
tiMAXuJ2= 1 ERNG=2
no 630 1isJRe P ANAXR
DO 630 JIa]1.NTOT,IFR3
TEUPREDATA(JS)
DATACJI)SDATACJI) e WR=DATACJIoL)ON]
&30 DATALJIRLINTENPROENSDATALIISLIwNR —
"“TEMPRuWR -
WRSHROWSTRROW[*WETP]
635 WINTEMNPROWSTPI*WIeWSTPR
640 THETAmeTWOP[/FPLOAT(IFACT(IF))
IPCISIAN)6500645,645
45  —THETAS=THETA
630 WSTPRECOS(THETA)
NSTPISSIN(THETA)
JERNGS[FPL¥ (L IFACTIIFI/2)
DO 695 1isi;141RNG,2
Do 695 J3sli.NTOT,NP2
IJANAXNT S IRANGS[FPY
DO 690 J2n}dasJiMAX, [FRY
JiMAX® 29 [FPieNPY
po 680 JimJ2aJIMAX,NRE
JJMAXIJZ‘NPGOxFPZ
no 680 J!lJloJlHAX.!FP!
NN 3w —— : =
JNAXS JMINs [FR2=IPpYL
tage{JIel3) /NRLHF
IF(JA=1316B9:699, 665
45%  SUMR®Q,
SUMI®0,
PO IR INGINAXGIFRL————————
SUMRESUMRSDATAL) -
660 SUNIASUNTeDATALJeg)
“WORKT TV RSUMR =
WORK(l*L)aSUM]
60 70 680
455 ttusaitt1t?!i‘itJiilitJSIiﬁ?xnr**‘““*
IEIMAX :
‘SUMRADAYALJ) — =
—sywtepAtAtISYY
QLDS.'O‘ .
oLnsiad
— gmgeteRi-
$70 z;ﬂ!nasunl
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treJae :Qol!aiilello

455 WRRWSTPR

484 TEMPRRNR- z
== ﬁmmﬂﬁﬁ'ﬁﬂﬂ

WInTENPRO*WSTYP oW o LSTPR
690 Tuaunuwa-ul
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