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THE FOLLOWING THREE PATTERNS OCCUR FREQUENTLY. 
BR=WR*AR-WI*AI 
BI=AI*WR+AR*WI 

DATA(J)=DATA(I)-TEMPR 
DATA(J+l)=DATA(1 + 1)-TEMPI 
DATA(I)=DATA(I)+TEMPR 
DATA (I + 1) =DATA (1 + 1) -»-TEMPI 

INDEX2MAX=INDEX1+N1-N2 

P. 15» L. 7 
7     ISTEP=2*MMAX 

P. 21» L. 2 AND P. 17* L. 2 
2     NTOT=NTOT*NN(IDIM) 

P. 22» L. 5-2 AND P. 17» L. 100-2 
NP2=NP1*N 

P. 22» L. 12 AND L. 51 
12 OR 51   NTW0=NTW0+NTW0 

P. 22» L. 70+2 
I1RNG=NP1 
IFUDIM-4)71#100»100 

P. 23* L. 72+1 
I1RNG=NP0*(l+NPREV/2) 

P. 23» L. 120 AND P. 17* L.110 
110 OR 120   UMAX=I2+NPl-2 

P. 23» L. 120+3 AND P. 17» L. 110+3 
J3=J+I3-I2 

P. 23» L. 200 
200   NW0RK=2*N 

P. 23» L.210-1 
IF(ICASE-3)210»220»210 

P. 23» L. 240+1 
J=J+IFP1 
IF(J-I3-IFP2)260»250»250 

P. 24» L. 420+1 AND ?•   18» L. 420+1 
KMIN=IPAR*M+I1 

P. 24» L. 440 AND P. 18» L. 440 
440   KDIF=IPAR*MMAX 
450   KSTEP=4*KDIF 

P. 24» L. 520+1 AND P. 18» L. 520+1 
KMIN=4*(KMIN-I1)+U 
KDIF=KSTEP 
IF(KDIF-NP2HF)450»450»530 

P. 25» L. 550+1 AND P. 19» L. 550+1 
WR=(WR+WI)*RTHLF 





P. 25» L. 560+2 AND P. 19» L. 560+2 
WI=(TEMPR+WI)*RTHLF 

P. 25» L. 570+2 AND P. 19» L. 570+2 
MMAX=MMAX+MMAX 

P. 26» L. 650+2 
J2RNG=IFPl*(l+IFACT(IF)/2> 

P. 2b» L. 655-2 
I=1+(J3-I3)/NP1HF 

P. 26» L. 665 
665   ICONJ=l+(IFP2-2*J2+I3+J3)/NP1HF 

P. 27» L. 670+1 
TEMPI=SUMI 
SUMR=TWOWR*SUMR-OLDSR+DATA(J) 
SUMI=TWOWR*SUMI-OLDSI+DATA(J+l) 
OLDSR=TEMPR 
OLDSI=TEMPI 
J=J-IFP1 
IF(J-JMIN)675»675»670 

675   TEMPR=WR*SUMR-OLDSR+DATA(J) 
TEMPI=WI*SUMI 
WORK(I)=TEMPR-TEMPI 
WORK(ICONJ)=TEMPR+TEMPI 
TEMPR=WR*SUMI-OLDSI+DATA(J+l) 
TEMPI=WI*SUMR 
WORK(I+1)=TEMPR+TEMPI 
WORK(ICONJ+1)=TEMPR-TEMPI 

P.   27» L. 690+2 
I2MAX=I3+NP2-NP1 

P. 27» L. 710-2 
JMIN=2*NHALF-1 

P. 28» L. 740 
740   NP2=NP2+NP2 

P. 28» L. 745-1 
IMAX=NT0T/2+l 

745   IMIN=IMAX-2*NHALF 

P. 28» L. 805+1 
I2MAX=I3+NP2-NP1 

P. 28» L. 805+3 
IMIN=I2+I1RN6 
IMAX=I2+NPl-2 
JMAX=2*I3+NP1-IMIN 

P. 28» L. 810 
810   JMAX=JMAX+NP2 
820   IF(IDIM-2)850»850r830 
830   J=JMAX+NP0 

P. 28» L. 840 
840   J=J-2 

P. 28» L. 860 
860   J=J-NP0 
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ABSTRACT 

This note describes and lists three programs, all written in USASI Basic 

Fortran, which perform the discrete Fourier transform upon a multi- 

dimensional array of floating point data. The data may be either real 

or complex, with a savings in running time for real over complex. The 

transform values are always complex and are returned in the array used 

to carry the original data. The running time is much shorter than that 

of any program performing a direct summation, even when sine and cosine 

values are precalculated and stored in a table. For example, on a 

CDC 3300 with floating point add time of six microseconds, a complex 

array of size 80 X 80 can be transformed in 19«2 seconds. Besides the 

main array, only a working storage array of size l6o need be supplied. 
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This note describes and lists three programs, all written in USASI Basic 

Fortran, which perform the discrete Fourier transform upon a multi-dimensional 

array of floating point data. The data may be either real or complex, with a 

savings in running time for real over complex (see Timing). The transform 

values are always complex and are returned in the array used to carry the 

original data.  The running time is much shorter than that of any program 

performing a direct summation, even when sine and cosine values are precalcu- 

lated and stored in a table. For example, on a CDC 3300 with floating point 

add time of six microseconds, a complex array of size 80 x 8o can be trans- 

formed in 19.2 seconds. Besides the main array, only a working storage array 

of size l60 need be supplied. 

The exact operation performed is called finite discrete Fourier trans- 

formation, also known as harmonic analysis or trigonometric interpolation. 

Given an array of data DATA(ll,I2,...), 

TRANSF0RM(J1,J2,...) = L  [DATA(ll,I2,...) ^Ul-1) (Jl~l) 

where Wl = exp(-2rti/KQ.), W2 = exp(-2rti/N2),...  and II and Jl run from 1 to 

Nl, 12 and J2 run from 1 to N2, etc. The Fortran convention of subscripts 

beginning at one is adhered to. This summation possesses many of the proper- 

ties of the more usual infinite integral 

F(y) = / f(x) e"2*1^ dx . 

By interpreting the subscripts modulo Nl, N2, etc. and requiring the data to 

represent equispaced points, we can easily prove the usual properties about 

linearity, orthogonality, inverse transform and relationship to convolution. 

See Gentleman and Sande {[3],  1966). 



There is no limit on the dimensionality (number of subscripts) of the data 

array. A three-dimensional transform can be performed as easily as a one- 

dimensional transform, though in a proportionately greater time. An inverse 

transform can be performed, in which the sign in the exponentials is +, 

instead of - .  If an inverse transform is performed upon an array of trans- 

formed data, the original data will reappear multiplied by N1*N2*... . 

The length of each dimension may be any integer, and as large as storage 

will permit. However, the program runs faster on composite integers than on 

primes, and is particularly fast on numbers rich in factors of two. For 

example, on the CDC 3300, the following timings for a one-dimensional transform 

have been calculated from the timing formula: 

Time for Complex Transform (sec) 

80 

2k 

6.2 

180 

1+80 

2868 

39 

Calling Sequence 

The listings of three programs are given in the appendices.  F0UR1 is a 

subset of F0UR2, which in turn is a subset of FOURT. FOURT is the most general, 

accepting multidimensional arrays of any size. F0UR2 is the same speed as 

FOURT but accepts only complex multidimensional arrays whose dimensions are 

powers of two. F0UR1 is much slower than FOURT or F0UR2, and performs only 

one-dimensional transforms on complex arrays whose lengths are powers of two. 

F0UR1 is intended mainly for pedagogical purposes; it is half a page of 

Fortran, the others being much longer. 

N Factorization 

k09k 2 X 23 X 89 

*+095 32 X 5 X 7 X 13 

i+096 212 

4097 17 X 2I+1 

1+098 2 x 3 x 683 

1+099 prime 

1+100 22 x 52 x 1+1 



The calling sequences are: 

CALL FOURT (DATA,NN,NDIM, IS IGN, IFORM, WORK) 

CALL F0UR2 (DATA,NN,NDIM,ISIGN) 

CALL FOUR1 (DATA,M,ISIGN) 

In all cases, DATA is the array used to hold the real and imaginary parts 

of the input data and the transform values on output. The real and imaginary 

parts of a datum must be placed into immediately adjacent locations in storage. 

This is the form of storage used by Fortran IV, and may be accomplished in 

Fortran II by making the first dimension of DATA of length two, referring to 

the real and imaginary parts.  If the data placed in DATA on input are real, 

they must have imaginary parts of zero appended. The transform values are 

always complex and replace the input data. Hence, the array DATA must always 

be of complex format. 

For F0UR1, array DATA must be one-dimensional, of length NN. For F0UR2 

and FOURT, it may be multidimensional. The extent of each dimension (except 

for the possible first dimension referring to the real and imaginary parts) 

is given in the integer array NN, which is of length NDIM, the number of 

dimensions.  That is, NN(l) = Nl, NN(2) = N2, etc. * 

ISIGN is an integer used to indicate the direction of the transform.  It 

is minus one to indicate a forward transform (exponential sign is -) and plus 

one to indicate an inverse transform (sign is +). The scale factor l/(Nl*N2*...) 

frequently seen in definitions of the Fourier transform must be applied by 

the user. 

If the data being passed to FOURT are real (i.e., have zero imaginary 

parts), the integer IFORM should be set to zero.  This will speed execution 

(see Timing). For complex data, IFORM must be plus one. 

WORK is an array used by FOURT when any of the dimensions of DATA is not 

a power of two.  Since F0UR2 and F0UR1 are restricted to powers of two, WORK is 

not needed.  If the dimensions of DATA are all powers of two in FOURT, WORK 

may be replaced by a zero in the calling sequence. Otherwise, it must be 

As usual, the first subscript varies the fastest in storage order, 



supplied, a real floating point array of length twice the longest dimension 

of DATA which is not a power of two. In one dimension, for the length not a 

power of two, WORK occupies as many storage locations as DATA. If given, it 

may not be the same array as DATA. 

Double precision versions of these programs may be obtained by changing 

the names to DFOURT, DF0UR2, and DF0UR1, declaring double precision all 

variables not beginning with the letters I, J, K, L, M or N, changing the 

references to COS and SIN to DCOS and DSIN and assigning the correct precision 
l 

constants to TWOPI (2*) and RTHLF (0.52).  DATA and WORK must then be double 

precision arrays. 

Storage and Common 

No common of any kind is used. An integer array of length thirty-two is 

used by FOURT.  FOURT is about four hundred Fortran statements long, F0UR2 

about one hundred and twenty and F0UR1 thirty-seven. 

Return and Error Messages 

There are no error messages, error halts or error returns in this program. 

If NDIM or any NN(l) is less than one, the program returns immediately. 

Algorithm 

A heavily modified version of the algorithm discovered independently by 

Danielson and Lanczos ([2], 19*12), Good ([h],  1958), and Cooley and Tukey ([1], 

1965) is used.  The following example is an application to a one-dimensional 

transform of length six. 

Let w = e   ' .  The transformation is written 

to = do + di + d2 + d3 + d4 + ds 

ti = do + wdi + w d2 + w3d3 + w4d4 + w5ds 

t2 = do + w^di + w
4d2 + w

6d3 + w
8d4 + w

LOd5 



t3 = do + w3dx + w6d2 + w9d3 + w12d    + vrL5d5 
4 

t4 = do + w
4di + w8d2 + w

12d3 + w
16d4 + w^ds 

t5 = do + w
5di + w10d2 + w

15d3 + w
2°d4 + w

25d5 

Straightforward computation requires 25 complex multiplications and 30 complex 

additions. The fast Fourier transform computes as follows: 

uo - do + &3 

"J3 ui = do + w3d. 

u2 = dx + d4 

u3 = di + w
3d4 

u4 = d2 + d5 

u5 = d2 + w
3d5 

to = uo + u2 + U4 

ti = Ui + wu3 + W^U5 

t2 = Uo + wu2 + w
4^ 

t3 = Ui + w
3u3 + w

6u5 

t4 = Uo + w
4u2 + w

8^ 

t5 = Ui + \Pu3   +   WL0U5 

which requires only 13 complex multiplications and 18 complex additions. Note 

that w3 = -1 and w6 = 1. 

Such a reduction in computation can be found for any length which is a 

composite integer.  The algebraic proof may be found in the appendix. Also, 

the various techniques for performing multidimensional transforms, real trans- 

forms, etc. are discussed there. 

Special Cautions and Features 

The finite discrete Fourier transform places three restrictions upon 

the data: 

1. The data must form one cycle of a periodic function. Alternately 

stated, the subscripts are interpreted modulo N. 

2. The number of input data and the number of transform values must 

be the same. 



3. The data must be equispaced in each dimension (though, of course, the 

interval need not be the same for each dimension). Further, if in 

any dimension the input data are spaced at interval dt, the resulting transform 

values will be spaced from 0 to 2rt(N-l)/(Ndt) at interval 2rt/(Ndt) as I runs 

from 1 to N. By periodicity, the upper limit is identified with -2jt/(Ndt) and 

in fact all points above the "foldover frequency" rt/(Ndt) are to be identified 

with the corresponding negative frequency. 

Those familiar with other implementations of the fast Fourier transform 

may be aware that the order of the data is scrambled in the course of execution. 

Unscrambling is performed automatically, however, and both the input and output 

values are placed in ordinary sequential arrangement. 

Timing 

Let N   n be the total number of points in the data array. That is, 
"t 0"ta_L 

N,   ., = N1*N2*.... Decompose N.   , into its prime factors, such as 
total * total        ^ 1 
K? TC^ TCS 

2 3 5 ' •••• Let Zg  be the sum of all the factors of two in N   _, that is, t o"taJ_ 
Ze  = 2*K2. Let S be the sum of all the other factors, Z = 3*K3 + 5*K5 +   

The time taken for a multidimensional transform is 

T = To + Ntotal [Tx + T2^ + TfZf] . 

For the CDC 3300, 

T ■ 3000 + Ntotal [6°° + U02^ + 175£f] microseconds. 

The greater optimization apparent for factors of two is due to 

1. The eight-fold symmetry of the trigonometric functions from 0 to 2rt. 

2. The fact that Fourier transforms of length two and four require 

fewer complex multiplies than transforms of other lengths. 

The above timing formula is accurate for complex data. 

The use of real data (IF0RM = 0) can reduce running time by as much as 

forty percent.  On the CDC 3300, a 6k  x 6k  complex array was transformed in 



6.1 seconds; a 6k  X 6k  real array took k.2  seconds. A complex array 1500 long 

took 6.1 seconds, while a real 1500 array ran only 3»^ seconds. 

Accuracy 

The simplistic idea about accuracy is apparently correct: because the 

fast Fourier transform takes fewer steps in execution, less error creeps in. 

Gentleman and Sande ([3], 1966) show theoretically that the root-mean-square 

relative error is bounded by 

1.06 Nfotal 2"b V2V3/2 

where b is the number of bits in the floating-point fraction and f. are the 

factors of Ntotal« 

Further error is introduced in this particular program by the use of 

recursive generation of sines and cosines for factors of Ntotal other than 

two. Sines and cosines needed for factors of two are computed precisely.  In 

actual practice, out of eleven and a half digits representable on the CDC 3300, 

about four were lost on long one-dimensional sequences like 1500 and i+096. 

Applications 

Besides all the direct uses of discrete Fourier transforms in signal 

processing, lens design, crystallography, seismic studies, etc., Fourier 

transforms find application in techniques of correlation and convolution. The 

principal tool here is the convolution theorem. Denoting the convolution of 

two discrete functions f and g by f*g 

(f*>k " SJ fA-j ' J J k-o 

where both j and k run from 1 to N and subscripts are interpreted modulo N, 

and denoting the discrete Fourier transform of f by F(f), the convolution 

theorem states 

F(f*g) = F(f) F(g). 



The difficulties here are that cyclical interpretation of subscripts may 

not be desirable and that N may not be convenient for fastest processing via 

the fast Fourier transform. Appendage of zeroes to the ends of the sequences 

solves both problems.  See Stockham ([5],  1966) and Gentleman and Sande ([3]> 

1966). 

Examples of Use 

A. FOURT 

1. Forward transform of complex 50 X ^0 array in Fortran II 

DIMENSION DATA (2,50,40), WORK (lOO), NN (2) 

NN (1) = 50 

NN (2) = kO 

DO 1 I = 1, 50 

DO 1 J = 1, IfO 

DATA (l,I,J) = real part 

1 DATA (2,I,J) = imaginary part 

CALL FOURT (DATA,NN,2,-1,1*WORK) 

2. Same example as 1, but in Fortran IV 

DIMENSION DATA (50,^0), WORK (lOO), NN (2) 

COMPLEX DATA 

DATA NN/50, kO/ 

DO 1 I = 1, 50 

DO 1 J - 1, kO 

1 DATA (l,J) = complex value 

CALL FOURT (DATA,NN,2,-1,1,WORK) 

3. Same example as 2, but in double precision 

Add the following statement: 

DOUBLE PRECISION DATA, WORK 

Change the call to: 

CALL DFOURT (DATA,NN,2,-1,1,WORK) 

8 



4.  Inverse transform of real 64 x 32 array in Fortran IV 

DIMENSION DATA (64,32), NN(2) 

COMPLEX DATA 

DATA NN/64,32/ 

DO 1 I = 1, 64 

DO 1 J = 1, 32 

1  DATA(I,J) = real value 

CALL FOURT (DATA,NN,2,+1,0,0) 

B. F0UR2 

Inverse transform of real 64 X 32 array in Fortran IV 

DIMENSION DATA (64,32), NN(2) 

COMPLEX DATA 

DATA NN/64,32/ 

DO 1  I = 1, 64 

DO 1 J = 1, 32 

1 DATA(I,J) = real value 

CALL F0UR2 (DATA,NN,2,+l) 

C. F0UR1 

Forward transform of real array of length 2048 in Fortran II 

DIMENSION DATA (2,2048) 

DO 1 1=1, 2048 

DATA(l,l) = real part 

1 DATA(2,I) = 0 

CALL F0UR1 (DATA,2048,-1) 
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Appendix I 

Historical Sketch 

In 1903 Runge published schemes for the optimal computation of twelve and 

twenty-four point Fourier transforms ([6]). They involved grouping and re- 

grouping of values in a manner similar to the modern FFT. Runge's schemes 

are well known and appear in many works on numerical analysis, including 

Runge and König ([7], I92U) and Whittaker and Robinson ([8], I9M+)•  Neverthe- 

less, no one thought of generalizing Runge!s ideas until 19^2 when Danielson 

and Lanczos ([2]) published an optimal algorithm for N • 2k point transforms. 

Their paper passed unnoticed. 

Meanwhile, in 1937 Yates ([9]) had devised an algorithm for the efficient 

computation of the interactions of 2n factorial experiments.  This involves 

sums of the form . .   . . 
t.  = Zd.(.1)

1oOo+HJi+... 
J      1 

where ioii •••  and Joji»«*  are the binary representations of i and j. 

Davies et al extended the method to 3n experiments ([10], 195*0; three years 

later, Good, in an abstruse paper, extended it to general factorial experiments 

([*+], 1958).  In the same paper, Good devised analogous algorithms for N point 

Fourier transforms, where N is decomposable into mutually prime factors. 

Cooley and Tukey removed this restriction and clarified Good's argument ([l], 

1965)• They also wrote what was probably the first computer program to 

perform FFT. 

Cooley and TukeyTs paper sparked a resurgence of interest in the Fourier 

transform.  Despite its indispensability in many areas of signal processing, 

the Fourier transform had long been avoided for reasons of long computation 

time. The FFT revived interest to such an extent that the IEEE Audio Trans- 

actions has devoted an entire issue to it (June 1967) and three groups have 

proposed implementing it in hardware ([11], 19^3; [12], 1967; [13], 1967). 
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Appendix II 

The Mathematics of the Fast Fourier Transform 

Mathematical descriptions of the algorithms used in the Fast Fourier 

Transform subroutines will be published in the near future. 

Punched decks for these three subroutines are available from J. J. 

Fitzgerald, J-105, or from SHARE. 
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Appendix III 

Listing of the Fortran Subroutines 

The listings of the three subroutines F0UR1, F0UR2, and FOURT are given 

on the following pages. All three are written in USASI Basic Fortran, and, 

as such are compatible with the great majority of Fortran compilers. 

Ik 



c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 
c 

SUBROUTINE F0uRKDATA,NN«ISJ8N) 
THE COOLIY-TUKEY FAST FOURIER TRANSFORM IN USASJ BASIC FORTRAN 
TRANSFORM(J) • SUM(DATA(I)♦W**(( 1-1)♦(J»l)>)t   WHERE I AND J RUN 
FROH 1 TO NN AND W ■ BXP< I8IQN»2*P I*SQRU«l )/NN>.  DATA 18 A ONE- 
DIM6NSI0NAL COMPLEX ARRAY (I»6,i THE RIAL AND IMAOINARV PARTS OF 
THß DATA ARE LOCATID IMMEDIATELY ADJACENT IN 8T0RA0S« SUCH AS 
FORTRAN IV PLACES THEM) WHOSE LENGTH NN IS A RQWBR OF T*C,  iSlQN 
IS *X  OR «1# QIVINÖ THI SIGN OF TH| TRANSFORM!  TRANSFORM VALUlS 
AR8 RETURNED IN ARRAY DATA« REPLACJNQ THE INPUT DATA.  THE TIME 18 
PROPORTIONAL TO N«L0Q2(N)i RATHER THAN THE USUAL N*«I.  WRlTTlN BY 
NORMAN BRENNER,  JUNE 19#7i  TMJS f8 T*€ ;8«0*TfST VERSION 
OF FFT KNOWN TO THi AUTHOR« AND IS JNTINDED MAINLY FOR 
DEMONSTRATION,  PROGRAMS F0UR2 AND FOURT ARE AVAILABLE THAT RUN 
-TWICE AS FAST AN& OPERATE ON MULTHlRBNlIOWAL ARRAYS HHftli— 
DIMENSIONS ARE NOT RESTRICTED TO POWERS OF TWO,  (LOOKING Ü' -StNlf 
AND COSINES IN A TABLE WILL OUT RUNNINO TIME OF FOUR1 BY A THIRD,) 
SEE" IEEE AUDIO TRANSACTIONS (JUNE 19A7), SPECIAL ISS" 
DIMENSION DATA(i) 
N«2*NN 
jwl 
DO 9 I«1«N#2 
IFU'JUI2»2 

TiHPR»DATAU> 
TIHPI«DA?äUUJ 
DATA<jMDATA*jJ 

~DATAU»l»«ÄTA*l 
DATAtpiTBMPR 
DATA(l*t)iTEMpi 

IF<M*8)S«J*J 
•J*J*M 

THITA«3!t419926533«FL0AT(|8IflNt(M.t)»/r.LOAT 
WR«C08<TMBTA) 

SIN<TH|T 

♦ MMAX 
!»WR*DATAU>*tff*5ATAt,f*i> 

TBMPI"WR*DATA(J*l)*WJ«DATA(j) 
DATA<j>iDATA<I>»TBMPR 
DATA<J*t>»DA?AiI*l>»TiHP| 
DATA<IMDAYA(I WTEMPR 
DATAU»lMDATA(I*lr»TlMPI 
MMAX»I8TBP 
QO   TO  6 
RETURN 

tMMAX) 

15 



c 
c 

c 
c 

THE  COOLIY'TUKBY  FAST  FOURIER  TMNIrOM   jH  USA»!   BASIC POWtPUN 

TRANSpORMUX*j2,,,,>   •  SUHtDATA« U* ft*, „>*«*•♦( < !t*l>*«WW>> 

WHERE Jl AND Jl RUN FROM 1 TO NN tl)   AND WliSXPÜStON*I»Pr» 
SQRT(«U/NNU)># ETC, 

l MULTIDIMENSIONAL FLOATING POINT ARRAY ALL Of HHOSi 
DIMENSIONS ARE POWERS OF TWO,  THE LBN9TH Of EACH DIMENSION WM 
STORED IN THE INTEGER ARRAY NN, OF .LBNBTH NDJM,  If XON |S 
♦1 OR-li GIVING THE SIGN OF THE "TRANSFORM,  THE "MAL 
AND IMAGINARY PARTS Of A DATUM ARE IMMEDIATELY ADJACENT IN 9T0RAQE 
(SUCH AS FORTRAN IV PLACES THEM),  TRANSFORM RESULTS ARE RETURNED 
IN ARRAY DATA, REPLACING THE ORDINAL DAT*,  TlHE IS PROPORTIONAL 
TO N*LOGE(N)i RATHER THAN THE USUAL NMg,  NOTE THAT IF A FORWARD 
TRANSFORM IS FOLLOWED BY AN INVBR8B TRANSFORM« THE OR*SJNAL DAYA 
WILL REAPPEAR MULTIPLIED BY NNU>*NNC2>•, , . j  fXAMPLE-- 
FORWARD POURIER TRANSFORM OF A tWO-D IMBNSIONAL ARRAY IN FORTRAN II 
DIMENSION DATA«2#64,32)iNNt2)  
NN(1)«64 
NN(2)»32 
DO 1 I»X#64 
DO X J»li32 
DATA(1# JijUREAL   PART 
DATA<2#I|J)»IMAGINARY RART 
CALL F0UR2<DATA,NN#2#-1) ■ == 

SAME EXAMPLE IN FORTRAN JV 
DIMENSION DATA(64,32>INN<2) 
COMPLEX DATA 
DAYA NN/64,J2/ 
DO 1 !»ii«4 
DO 1 J"li32 
DATA(t#J>iCOMpLEX VALUE 
CALL F0UR2(DATA,NNi2»-l) 

PROGRAM 8 
RADER, M 
BY RALPH 

THIS VERS 
TO THE AU 
COMPUTING 
PROGRAMS 
PERFORM T 
FORTRAN, 
POWERS OF 
FOUR! IS 
TO ONE DI 

Y NORMAN BRENNER FROM THE BASIC PROGRAM BY CHARLES 
AY 1967,  THE IDEA FOR THE DIGIT REVERSAL WAS SUGGESTED 

ION OF THE FAST FOURIER TRANSFORM IS THE FASTEST KNOWN 
THOR,  LOOKING UP SINES AND COSINES IN A TABLE INSTEAD OF 
THEM WOULD DBCREASE RUNNING TIME SEVEN PERCENT, 

FOURT AND FOUR1 ARE AVAILABLE FROM THE AUTHOR THAT ALSO 
HE FAST FOURIER TRANSFORM AND ARE WRITTEN IN USASI BASIC 
FOURT IS THREE TIMES AS LONG# IS NOT RESTRICTED TO 
TWO, AND RUNS UP TO FORTY PERCENT FASTBR ON REAL DATA, 

ONE FOURTH AS LONGi ONE HALF AS FAST* AND JS RfiSYRlCTiD 
MENSION AND POWBRS OF TWO. 

SEE-- IEEE AUDIO TRANSACTIONS (JUNE 19*7># SPECIAL ISSUE ON FFT, 

DIMENSION DATAU),NN(U 
IF(NDIM-»l)700,l#l 

1    NT0T«2 
DO 2 rOIN»l#NDlM 
IF(NN(IDIM))700«700«2 
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2 

C 
c 
c 

c 
c 
c 
c 
100 

110 

NTOT*NTQf*NM!DJM) 
RTMLF»t>-0710 67812 
TW0P!»6via318 53070 

MAIN LOOP :rOR BACH DIMENSION 

NPI«2 
DO 600 ID!M«1,ND!M 
NiNNUDJM) 
NP2*NPl*N 
!F(N-l>700i6D0#100 

SHUFFLE DATA B* 8JT REVERSALi SJNCR N»2**K,  A8 THE SHUFFLINQ 
CAN BE DONE BY SIMPLE INTERCHANGE* NO WORKING ARRAY IS NEEDED 

120 
130 
140 

160 
C 

c 
c 

310 
320 

330 

360 
350 
360 
370 

360 

MP2HF»NP2/2 
J»l 
DO   160   l2H#Np2,NPi 
IF(J-r2)llO»130#130 
UMAX«I2*NPl-2 
DO   120   Jl«I2#JlMAX#2 
DO   120   I3>U#NT0T,NP2 
J3»J*I3-I2 
TEMPR«DATA(J3) 
TeMPJ«DATA(l3*l> 
DATA(I3>»DATA(J3) 
DATA<I3*1>«DATA(J3*1) 
DATA(J3>"TEMPR 
DATA(J3«1)«TEMPI 
M«NP2HF 
IFU-M>160.160»150 
J.J-M 

IF(M-NPl>l6Q»l«0il«0 
J«J«M 

MAIN LOOP,  PERFORM FOURIER TRANSFORMS OF LENGTH FOURi WITH ONI OF 
LENGTH TWO IF NEEDED,  THE TWIDDLE FACTOR W»BXPU8JQN#2«P[* 
SQRTU1)*M/(4*MMAX)>,  CHECK FOR THE SPECIAL CASE W« lSI0N«8QRTt»l) 
AND REPEAT FOR W»W*U* JSIGN«SQRTt»l) J/8QRT (2 ) , 

NP1TW«NP1*NP1 

IFtIPAR"«)350l330,320 
IPAR»lPAR/4 
00 TO 310 
DO 340 Il«liNpli2 
DO 340 KttIl#NTOT,NPlTW 

2«Kl*NPl 
TgMPR«DATA(K2) 
TEMPI"DATA(K2*1J 
DATA(K2)»DATA<Kt>.TEMPR 
DATA(K2<»l)"DATA(Kl*l>-TEMPI 
DATA(K1)«DATA(K1WTEMPR 
DATA<Kl*t)«DAfA(Kl*l>*TiMPI 
MMAX«NP1 
jr<MMAX»Np2HF)370#6QO,600 
LMAX«M*X0(NPlTWiMMAX/2) 
DO  570   L»NPliLMAX,NPlTW 
M«L 
tf<MMAX-Nn)420*420i3( 
THiTA»-TWOPi*FLOAT<h 
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390 

410 

430 
440 
450 

THITAt-TUfTA 
WR«COS<THETA) 
WtiSlN(TMETA) 
WIR>NR*HR-MI*M1 

t«2, *tfR*W] 
RiW2R«HRpN2!*W! 
3!«W2R»wi*w2i*w» 
^-«m^mt,NRi,2 

KM!N»tMR*M*ll 
tf(MHAXnNRtM30#430i440 

KDlF«tM»«MMAX 
Klti>»4f«D!r 
DO  510   KIMM1N*NT0T# 

KlaKl*KO!f 
K4iK3»KDir 
rr<HMAX-NPl)46Q,4*9,410 
UiR»D«TACRl>*D*TA<R«) 
UiMÖltI(Ki*l)*DATA(R 
U1R»DITAUI)*DATA(K4) 
U2!«DATA(K3*U*DATA(K4*1> 

UlRiBmtK&HDATMKi) 
UJ|»DAtA(Ri*i)«D*TA(Ra*l) 
rr<i$riNM70.475,4?j 
U4RiOATA<Rl»i>«DATA(K4lrfr 
U4!iDATA(KA)»0ATA<N3) 
00   TO   US 
U4R«6A?AtK4«l>«BATA(*«*ll 
U4tiDATA<R3>»DATA(ä^ 
80 TO »10 

Ü0      ■TlR«WPATA<Kt)»Wtt«DATAUa«l) 
Tlt«M|R*BATA(Ka^l>*M2I*0ATA(K2) 
T3RiHR*0*TA(R3>»WI«DATA(N3«l) 
73!"WR«DITAIK3»1>*WI*DATA<*3) 
T4R«y3R*DATA(K4>-w3I*DATA(R4*l) 
T4t«UM*6AfACR4*|>«W3|40ATA(N4) 
UlR"DlTMKU*TaR 
Ut!«DATA(Kl*l>«T2l 
U2R-T3R»?4R 

R»0äTAU4>«T8R 

IfilllONi4t0»3O0» 
ü4R«T|l«T4! 
Ü4I1T4R.T3R 
80   TO   »10 
J4RiT41f?3I 
U4|»T3R»?4R 
OATAtKlJtfjf.. 
DATA(Rl»l)«Ul|*Ull 
DATA(Kt)iU3R*U*R 
0ATA(Rl«l)"U*!*U4l 
sa*A(ftI»ul*»9a* 

'"1py£l*«si 

490 

R- =   0ltAtRi»tü«Ä»ü*t 
HO DATA(R4«l)iüJl-U4l 

KM|NI4MHR!NM1>M1 
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MHHAX 

TIMPMWR 
WRI(WR»HI)*RTHLF 

TlMMiKR 
WR»< «*•*!> ««m* 
W|«(T|MM*WJ)»*TMLr 
00  TO  410 
CONTINUE 
fMMlM'Aft 

00  TO  I6C 
N^1«NP2 
RITURN 
■WO 
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SUBROUTINE FOURTtDATAiNNiNDIMifftGNlIFORM,WORK> 

TH1 CQQLBY-TUKEY FAIT FOUBtBR TRANSFORM Ih  UBAfl BASIC FORTRAN 

TRANSfORM(Jiij2#,,.) • SUMtDATA«litJ2, ,,,>**!•♦<<lt«X**<UX« 
c •Nt**uriPÜnja«an«,M>* 
C WHERE U AND Jl «UN FROM I TO NNtl) ANÜ WltEXP(tSlON*l*Pt* 
C SQRT(«U/NN(1>), ETC.  THERE 21 NO .LIMIT ON THE DIMENSIONALITY 
C (NUMBER Of SUBSCRIPTS) OF THE DATA ARRAY,  IF AN INVERSE 
C TRANSFORM ( IS IQN"*1) If PERFORMED UPON AN ARRjj^flgJjBANfFQRH80 
C <!S!<3NB«l> DATA, THE ORIGINAL DATA WILL REAPPEAR, 
C MULTIPLIED BY NN(1>*NN(2>*.j,  THE ARRAY Of INPUT DATA MUST IE 
C IN COMPLEX FORMAT,  HOWEVER« If ALL IMAGINARY PARTS ARE ZERO Cfffi 
C THE OATA ARE DISGUISED REAL) RUNNING TIME JS CUT UP TO FORTY PER- 
C CENT.  (FOR FASTEST TRANSFORM OF REAL DATA« NNU) SHOULD BE EVEN.) 
C THE TRANSFORM VALUES ARE ALWAYS OONRLEX, AND ARE RETURNED IN THf 
C ORIGINAL ARRAY OF DATA, REPLACING THE INPUT DATA,  THE LENGTH 
C OF EACH DIMENSION OF THE DATA ARRAY MAY BE ANY INTEGER.  THi 
C PROGRAM RUNS FASTER ON COMPOSITE INTEGERS THAN ON PRIMES, AND If 
C PARTICULARLY FAST ON NUMBERS RJCH !N 'FACTORS OF TWO, 
C 
C TIMING IS IN FACT GIVEN BY THE FOLLOWING FORMULA,  LET NTOT BE YHf 
C TOTAL NUMBER OF POINTS (REAL OR COMPLEX) JN THE DATA ARRAY, THAT 
C IS, NT0T»NNU)*NN<2>*,.,  D600MPO8E NTOt INTO fYS-PRIME FACTORS. 
C SUCH AS 2**K2 * 3**K3 * 9**K9 ♦ ,,,  LET SUM2 BE THE fUM OF ALL 
C THE FACTORS OF TWO IN NTOT, THAT II, SUMS ■ t*K2,  LET SUMF BE 
C THE SUM OF ALL OTHER FACTORS OF NTOT, THAT IS# SUMF • 3«K3*»*K9*. , 
C THE TIME TAKEN BY A MULTIDIMENSIONAL TRANSFORM ON THESE NTOT DATA 
C IS T » TO * NT0T*m*T2*BUMa*T3*SUMF>,  ON THE CDC 3300 (FLOATING 
C POINT AOD TIME ■ SIX MJCROSECONOS), T • 300Ö ♦ NTOT*(iOO*40«SUMa* 
C 175*SUMF) MICROSECONDS ON COMPLEX tfATA, 
C 
C IMPLEMENTATION OF THE DEFINITION BY SUMMATION WILL RUN JN A TIME 
C PROPORTIONAL TO NTOT*(NNU>*NNU>* . , . >.  FOR HIGHLY COMPOSITE NTOT 
C THE SAVINGS OFFERED BY THIS PROGRAM CAN BE DRAMATIC*  A ONE'DIMEN- 
C SIONAL ARRAY 4000 IN LENGTH WILL BE TRANSFORMED IN 4000*(600* 

40»(2«2«2*2*2)*X79*(9*9*9M « 1«,5 SECONDS VERSUS ABOUT 4000* 
C 4000*179 i 2600 SECONDS FOR THE STRAIGHTFORWARD TECHNIQUE, 
C 
C THE FAST FOURIER TRANSFORM PLACES THREE RESTRICTIONS UPON THE 
C DATA. 
C 1.  THE NUMBER OF INPUT DATA AND THE NUMBER OF TRANSFORM VALUES 
C MUST BE THE SAME, 
C 2,  BOTH THE INPUT DATA AND THE TRANSFORM VALUES MUST REPRESENT 
C EQUISPACED POINTS IN THEIR RESPECTIVE DOMAINS OF TIME AND 
C FREQUENCY,  CALLING THESE SPACJNGS OELTAT AND DELTAF, JT MUST BE 
C TRUE   THAT   DELTAF«2*PI/(NN(IMDELTAT),      OF   COURSE,   DELTAT   NEED   NOT 
C BE THE SAME FOR EVERY DIMENSION, 
C 3,  CONCEPTUALLY AT LEAST, THE JNPUT CITA AND THE TRANSFORM OUTPUT 
C REPRESENT SINGLE CYCLES OF PERIODIC FUNCTIONS. 
C 
C THE CALLING SEQUENCE IS»- 
C CALL FOURT(DATA,NN#NDIH,ISIGN#IFORM,WORK) 

C DATA IS THE ARRAY USED TO HOLD THE REAL AND IMAGINARY PARTS 
C OF THE DATA ON INPUT AND THE TRANSFORM VALUES ON OUTPUT,  IT 
C IS A MULTIDIMENSIONAL FLOATING POINT ARRAY, WITH THE REAL AND 
C IMAGINARY PARTS OF A DATUM STORED IMMEOIATBLV ADJACENT JN STORAGE 
C (SUCH AS FORTRAN IV PLACES THEM),  NORMAL FORTRAN ORDERING IS 
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C EXPECTED* THE FJB$T SUBSCRIPT CHANGING FASTEST,  THE DIMENSIONS 
C ARE GIVEN IN THE--JN-TEGBR ARRAY NN# OF LENGTH NDJM.  ISJQN *S -1 
C TO INDICATE A FORWARD TRANSFORM (EXPONENT I Al SIGN IS •) AND *1 
C FOR AN INVERSE TRANSFORM (SIGN IS *),  [FORM IS *t IF THE DATA ARE 
C COMPLEX, 0 IF THE DATA ARE REAL,  IF IT IS 0, THE IMAGINARY 
C PARTS OF THE DATA MUST BE SET TO ZERO,  AS EXPLAINED ABOVE, THE 
C TRANSFORM VALUES ARE ALWAYS COMPLEX AND ARE STORED IN ARRAY DATA, 
C WORK IS AN ARRAY USED FOR WORKING STORAGE,  IT JS FLOATING POINT 
C REAL» ONE DIMENSIONAL OF LENGTH EQUAL TO TWICE THE LARGEST ARRAY 
C DIMENSION NN<I> THAT IS NOT A POWER OF TWO,  IF ALL NN(D ARE 
C POWERS OF TWO, IT IS NOT NEEDED AND MAY BE REPLACED BY *ERO IN THE 
C CALLING SEQUENCE,  THUSi FOR A ONE-DIHBNSJONAL ARRAY, NNU) ODD« 
C WORK OCCUPIES AS MANY STORAGE LOCATIONS AS DATA,  IF SUPPLIED« 
C WORK MUST NOT BE THE SAME ARRAY AS DATA,  ALL SUBSCRIPTS OF ALL 
C ARRAYS BEGIN AT ONE, 
C 
c EXAMPLE i, THREE-DIMENSIONAL FORWARD FOURJER TRANSFORM OF A 
C COMPLEX ARRAY DIMENSIONED 32 BY 25 BY 13 IN FORTRAN IV. 
C DIMENSION DATA(32,25*13)»W0RK(SQ)iNN(3) 
C COMPLEX DATA 
C DATA NN/32#2S,13/ 
C DO 1 I»li32 
C DO 1 J«li25 
C DO 1 KU«13 
C 1  DATA<I*JiK>«C0MPLEX VALUE 
C CALL F0URTCDATA,NNi3r*i*l#W0RK) 

c EXAMPLE a, ONE-DIMENSIONAL FORWARD TRANSFORM OF A REAL ARRAY OF 
C LENGTH 64 IN FORTRAN II, 
C DIMENSION DATA(2#64) 
C DO 2 I«li64 
C DATA<1#P"R6AL   PART 
C 2      DATA(2ip«0, 
C CALL FOURT<DATA,64#.lfli0i0> 
C 
C THERE ARE NO ERROR MESSAGES OR ERROR .HALTS IN THIS PROGRAM,  THE 
C PROGRAM RETURNS IMMEDIATELY IF NDIM OR ANY NN(J) IS LESS THAN ONE, 
C 
C PROGRAM BY NORMAN BRENNER FROM THE BASIC PROGRAM BY CHARLES 
C RADER.  JUNE 1967,  THE IDEA FOR THE 'DIGIT REVERSAL WAS 
C SUGGESTED BY RALPH ALTER, 
C 
C THIS IS THE FASTEST AND MOST VERSATILE VERSION OF THE FFT KNOWN 
PTO THE AUTHOR,  A PROGRAM CALLED F0UR2 IS AVAILABLE THAT ALSO 

PERFORMS THE FAST FOURIER TRANSFORM AND IS WRITTEN IN USASI BASIC 
C FORTRAN,  IT IS ABOUT ONE THIRD AS LONG AND RESTRICTS THE 
C DIMENSIONS OF THE INPUT ARRAY (WHICH MUST BE COMPLEX) TO BE POWERS 
C OF TWO,  ANOTHER PROGRAM, CALLED FOURli IS ONE TENTH AS LONG AND 
C RUNS TWO THIRDS AS FAST ON A CNE-DJME\SIONAL COMPLEX ARRAY WHOSE 
C LENGTH IS A PQWER OF TWO, 
C 
C REFERENCE-- 
C IEEE AUDIO TRANSACTIONS (JUNE 1967), SPECIAL ISSUE ON THE TFT, 
C 

DIMENSION DATA(l),NN(l»iIFACT(3k)#WQRK(p 
TWOPI'6.283183307 
RTHLF«,70716 67812 
!F<NDIMnl)920,l#l 

1 NT0T»2 
DO 2 IDIM«liNDlM 
IF(NN(JDIM))920,920,2 

2 NTOT»NTOT#NNHOlM)   . 
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m 

c 
c 

MAITTCOOrtoR iÄCH  DtMINtlON 

NPt«2 .  
DO   910   I$|M«i,ND!M 
N-NNUDIM) 
NP2«NRl«N 
!P<N*imo.90o#5 

!S N A POWER or TWO AND IF NOT, WHIT ARE ITS FACTORS 

30 

M"N 
NTWO'NRl 
im 
!D!V»8 
IQUQTiM/lDIV  
!RSM>M'UtV*lQÜOT 
ir(IQuOT«lDIV>50illiH 
!FCR6M>l0ii^#20 
NTWOiNTWO*NtWQ 
!FACT(Jf)t!OIV 
!F«IF*1        
miougT = 
30 TO 10 
IBIV5 
[NBNMir 

30 IOUOT.M/IDIV 
!RIM»MMl!VMQUOT 

»ItUiU 

NINSIONS, 
AL TRANSFORM FOR TWi 2ND OR 3RD D 
fFORH MAUF T 

JUQATE SYMMETRY, 
RIAL TRAN8FQRM F0 

MITWOD-« 

T«l tWA3tNARY 
4, RIAL TRANSFORM FOR THl 1IT _ 

TRANSFORM A OOMRLIX ARRAY OF 
IN 

ARI THS ODD NUMIIRID RIAL VALUIS. SIRA 
TM   UCOND  HALF  IT ;CO*JU«AT§ -SYIMMIW* 

it   WHOSI   RIAL  RARTI 
WOS§   THAOtNARy  RAITS 
(UT" iTf   AND   IURRLY 
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JMtf   JNTIACHANlli   NO   K0**tNI   «MA*   19  tiflfilC 

Dp   198   II«! 

x*N»iÄt 

• «»JMATA(|3*1 
AtAlflMpATAf 
iTA<Z»»iMDAT 
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260 

270 
C 
C 
C 
C 
c 
c 
300 

310 
320 

330 

340 
350 
360 
370 

380 

390 
400 

410 

420 

430 
440 
450 

460 

470 

J»J-f 
rrp2» 

triiF 
CONTI 
I2MAX 
!■! 
DO If 
DATA< 
DATA< 
!»!*2 

FP2 

«l 
P2-NP1)26Q,260,24 
NUE 
■I3*NP2-N^1  

0 rt«l3il2MAXiN^l 
!2)»W0RMi) 
t2*l)»W0RK(!4l) 

MAIN LOOP FOR FACTORS OF TWO.  PBRFORM FOURU« TRANSFORMS OF 
LENGTH FOURi WITH ONE OF XlNfiTU TWO If   NEEDED.  THi'TWIDOUI FACTOR 
W«BXP(IS!QN»2*PI«S0RT(«1)»M/(4«MMAM)),  OHICK FOR W* I S ! QMSQRT (-1 > 
AND REPEAT FOR Waw*Il*JS JQN*SQRTt-1)>/8QRTC2), 

IF(NT 
NP1TW 
IPAR» 
IFUP 
IPAR^ 
OO TO 
DO 34 
DO 34 
K2«Kl 
TEHPR 
TEMP! 
DATA( 
DATA( 
DATA( 
DATAl 
MMAX* 
!F(MM 
LMAX« 
DO 57 
M»L 
IF(MM 
THKTA 
IFCIS 
THETA 
WRaCO 
Iff 1*1 
W2R»W 
W2!»2 
W3R>W 
W3!"W 
DO 53 
KMIN* 
!F(MM 
KM!N8 

KD!F = 
KSTEP 
!F(KS 
DO 52 
K2«K1 
K3aK2 
K4iK3 
!F<MM 
U1R»D 
U1!»D 
U2R"D 

WO«NPl)60Q»6 
aNPl«NPl 
MTWO/NP1 
AR-a>350,330 
IPAR/4 
310 

0 IlalillRNQ 
0 KlalliNTOT 
♦ NP1 
■DATA(K2) 
aDATA(K2*i; 
K2)»DATA<K1> 
K2*1)«DATA(K 
Kl)»DATA(Kl> 
Kl*l)«DATA(K 
NP1 
AX*NTW0/2>37 
MAX0(NP1TW,M 
0 L«NPl'LMAX 

00*309 

«320 

• 2 
,NPITW 

•TEMPR 
1*1>-TEMPI 
♦TEMPR 
1«.1>*TEMPJ 

0.600,600 
MAX/2) 
,NP1TW 

AX.NPl? 
a-TWOPl 
IGNM00 
a-THETA 
S(THETA 
NtTWETA 
R*WR-Wl 
,*WR*WI 
2R*WR-W 
2R*«I*W 
0   Ilali 
U*!PAR 
AX^NPl) 
IX 
IPAR*MM 
a4*KDIF 
TEP-NTW 
0 K1«KM 
♦ KDIF 
♦ KDIF 
♦ KDIF 
AX^NPl) 
ATA(Kl) 
ATAtKl* 
äTA<K3> 

420,420.380 
*FL0AT(D/FL0AT(4aMMAX) 
«390,390 

) 

•Wl 

2l*W! 
2l*WR 
URNG,2 

430,430,440 

AX 

0)460,460#530 
lN#NTOT,KSTEP 

470,470,480 
♦DATA<K2) 
1)*DATA(K2*1) 
♦DATA(K4) 
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U2I«DATA<K3*1)*DATA(K4*1) 

U3R«DATA(Kl)*DATA(K2> 
U3I»DATA<K1*1>-DATA(K2*1> 

rF(lSlQN)47X#472i472 
471 U4R«DATA<K3*1)-DATA(K4*1) 

U4I«DATA(K4)-DATA(K3) 
00 TO 510 

472 U4B«DATA(K4*1)-DATA(K3*1) 
U4!»DATA(K3)"DATA(K4) 
00 TO 510 

480   T2R»W2R*DATA(K2>-W2J*DATA(K2*1) 
T2!»W2R'»DATA(K2*1)*W2I*DATA(K2) 

T3R«WR*DATA<K3>-WI»DATA(K3*1) 
T3!»WR*DATAU3*1>*WI*DATA(K3> 
T4flsW3R*DATAiK4)-w3I*DATA(K4*l) 
T4!=W3R»DATA(K4»1)«W3I*DATA(K4) 
U1R»DATA<K1>*T2R 
Ul!»DATA<Kl*i)*T2l 
U2R*TJR*T4R 
U2I-T3I+T4I 
U3R«DATA<KU"T2R 
U3t"DATA«Kl*X>-T2! 
IF(ISIGN)490I500#500 

490   U4R*T3I*T4I 
U4t»T4R"T3R 
00 TO 510 

500   U4R»T4I?T3I 
U4t»T3R^T4R 

510        DATA(KD»U1R*U2R 
DATA«K1*1)«U1I*U2I 
DATA<K2>»U3R*U«R 
DATA<K2*l)»U3l*U4l 
DATA<K3>«U1R"U2R 
DATA<K3*1)«U1I-U2! 
DATA(K4>PU3R-U^R 

520   DATA(K4*l)«U3fU4l 
KDIF'KSTfiP 
KM!N«4*(KM1N"IU*!1 
00 TO «50 

530   CONTINUE 
MPM+UMAX 
IF(M-MMAX)540,540,570 

540   IF(ISI3N>550#560»560 
550   TEMPR-WR 

WR»<WR*WI)*RTHLF 

Wt«(Wt-TiMPRNRTHLF 
00 TO 410 

560   TEMPR-WR 
WR»(WR-WU*RTHLF 
WIi{TEMPR*Wj)«RTWLF 
00 TO 410 

570   CONTINUE 
IPAR"3»IPAR 
MMAX«MMAX*MMAX 
00 TO 360 

C 
C     MAIN LOOP FOR FACTORS NOT IQUAL TO TWO»  APPLY THE TWIDDLE FACTOR 
C     W»BXPUS!aN«2*Pl«S8RT<-l)«t,jt»i>*<j2«jl>/<irPl«!FPtni JWfiN 
C     PERFORM A FOURIER TRANSFORM OF .LBNttTH IFACTUF), MAKINO USE OF 
C     CONJUQATE SYMMETRIES, 

i ft *"   

600   lF(NTWO-NP2J605,700i700 
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605   !FR1*NT* 

630 

633 
640 

NPlHFiNPl/2 
610   IFP2MF,ACT(IF)*irpi  

JlMiNlNPi«! 
!F(JlMlN»!FPi»615,6l5,640 

615   00 635 Ji«JlMlN,IFPl#NPl 
TMBTAi-TWOP I •FLOAT (Jl'D/ruOÄtCriH) 
!F(IS!QN)625<620i6l0 

620   THiTA«-TMETA 
625   USTPR«COS(THETA} 

WSTP!«S!N(TH6TA> 
WR«WSTPR 
wjiWSTPI 
J2MIN"J1*JFP1 
J2MAX-J1*IFP2.IFP1 
00 635 J2.J2MIN,J2MAX,JFP1 
HMAX«j2*IlRNa-t 
DO   630   Ilaj2i UMAX|2 
DO  630   J3»I1INT0T,IFP2 
TBHPR«DATA(J3) 
DATACj3)tDATA(J3)*WR-DATA(j3^1MWI 
DATA(j3*l>«TiHPR*Wf*DATAtJJ*i*«** 
TEHPR'WR 
WRiWR*USTpRiiM!*WSTPl 
WJiiTEMPR«WSTP!*W!*WSTPR 
THBTA.-TWOP I/FLOAT Ur ACT UF)> 
IFUS!QN)65Q#645#645 
THfTA«»THETA 
WSTPR»COS(TMiTA) 
W8TP!«S|N(THBTA) 
J2RNa«tFPi*U*lFACT(rF)/2) 
DO 695 Ilili!lRNQ,2 
DO 695 I3«11INT0T,NP2 
j2MAX»!J*j2RNQ*JFPi 
DO 690 Jit!3ij2MAXilFPl 
J1MAX«J2*JFP1.NP1 
DO 660 Jl«j2#jlMAXiNPl 
J3MAX»J1*NP2«!FP2 
DO 680 j3«Jl<j3HAXiIFP2 
JM!N«J3SJ2*I3 .   ^ 
JMAX«JM|N*!FP2-IFP1 
!ai+(j3e|3)/Np&Hr 
!F(j2<t3)655i655«665 

655       SUMR'O. 
IUHIMJ 
DO 660 J«JMIN,JHA 
SUMR"8UHR*DATA<J) 

660   SU«I«SUM!*DATA(j*D 
WORK«! >»8UW* 
W0RK<r*Ui8UMJ 
QO  TO  680 

665        !C0NJ"1MI 
JPJMAX 
9UMR»D*Ti<J) 
3UM!»D*tA(jal) 
OLDSPtO, 
QLilMlj 
Jij-IFPI     —= 
T|MPR»8UMR 
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461 

Wüf*U>ft|*M.Tl 
WOIK<rCONj)tT|MM 

3MM>WR*IUMI«QLDS 
pipwftim» 

WOMU^)*TIMpÄ*HKPf 
WQRKi ICONJ^UiTEMPÄ-tiMRI 
CONttNUl 
rr<ja»<mi9*ii9tiit 
WRBWSTPR 

«90 TWOWR«WR**R 

c 
c 

TOO 
701 

7Q3 

COMPLETE   A   REAL   TRANSFORM   IK   THE   1$T   DIMENSION,   N   1VEN,   BY   CON- 
JUtATl  tVHHJTwm, 

80   TO   <90Qi800»90Q,7<U>,ICASE 
NHALF»N 

TMITAi»TWOPUFl.OAT(N) 
ir(IS!QN)703#702i702 

Til       TUlflMtMTA 
WSTPR«C0S<Th6TA) 
W|TPJiSlN<TH6TA) 
WR.WSTPR 
W|«WlTP| 
IMIN«3 

00 TO 72» 
710   JiJMlN 

—W^*P ifiMMffff... 
SUMRMDATA(jUDATA(J>)/2, 
SUM!MDATAU*l>*DATA(j*m/2, 

_-MtJ^gATA(I>«DATA(J»^^^^ 
Dtri*<DATAtI*l>»DATA(j*l)>/2, 
TiMP«"WR*SUHI*MI*DirR 
TeMPJtWI'SUMUWR^DtrR 
DATA(pliUMR*TBMPR 
DATA(t*l)«Diri'TBMRI 
54fA(j> fSUMft^§«*= 
DATAtJ*D»-DirHTgMPI 
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!MIN*!M!N*2 
~~QHIMJMIN-2 

TEMPR«WH 
   WRBWR*WSTPRBW:*W8TPI 

Wt»TEMPR*WSTPl*W!*WSTPR 
725        IP(XMlN«<jMlN>7iOf730»740 
730 !P(ISIQN)731»74QI740 
731 DO   735   MIMiN,NT0TiNP2 
735       DATA<I**>»"DATAU*1) 
740        NP2"NP2*NP2 

NT0T«NT0T«NT07 
J»NTOT*l 
IMAX»NTQT/2*1 

745   !M!N»IMAX-2*NHAU?= 

!«!M!N 
00 TO 755 

750   DATA<J>!DAl 
DATA<J*i)»*DATAU*U 

755   H!+2 
J"J-2 
!P(I-!MAK)750,760«760 

760   DATA(J>9DATA(!MJN>-DATA(!M!N*1) 
^^ DATA(J*i?f^p 

I irU-J)770#7B0#7S0 
765       DATAtJ>»BATAU> 

DATA(J*l)«DATA(I*li 
770   lit'« 

P(!-IHIN)775,775,765 
DATA(J)#DATA(|MJN)»DATAUH!N*1) 
DATA<J*i)«0, 
IMAX'IMtN 
00 TO 745 
DATAU>iDATAU>*DATAC2> 

TAC2)i 
llTft «It 

0HPUET6 A R6AL TRANSFORM FOR THE 2ND OR 3RD DIMENSION ST 
CONJUGATE SYMMETRIES, 

(I1RNQ«NP1> 
SlftM   !3«1INTOT«NP2 
2MAM*I|*NRI«NP1 

860   Ui!3#r2MAX>Nn 
!MtN"!2«!lRNQ 
IMAX»ra*Npt»2 
MAX"2*r3*NPl-I 

|f||t*|3itt0riB9»8 
jMAXfjMAX#NP* 
Tr(tO!Mlt>850,890,830 
JPJMAX*NRO 
DO   I4Q   I«]MIN,!MAX»2 
lf*tfm*?A*3 

DATA(t*|)iPDATA(J»t 

tie 
«20 
• 30 

• 40 
• 50 

DO   MO    |f!MIN,lMAX#NPO 
?mft>|IATA(j) 

t|f«DA?AtJ* 
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